Answer:moles = no. of molecules / Avogadro's number
= 2.26 x 10^33 / 6.022 x 10^23
= 3752906011
Round to significant figures which is 3 = 3.75 x 10^9 mol
Explanation:
The formula for finding how many moles of a substance when given the amount of molecules is: moles = number of molecules / Avogadro's number
Answer:
The correct answer is B.
The
is samller than
of the reaction . So,the reaction will shift towards the left i.e. towards the reactant side.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q=\frac{[PCl_3][Cl_2]}{[[PCl_5]^1}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5B%5BPCl_5%5D%5E1%7D)


Given :
= 0.0454
Thus as
, the reaction will shift towards the left i.e. towards the reactant side.
Answer:
Water pressure 0.5 atm
Total Pressure= 2.27 atm
Explanation:
To answer this problem, one has to realize that there are two processes that increase the temperature of the sealed vessel.
First, the dry air in the sealed vessel will be heated which will cause its pressure to increase and it can be determined by the equation:
P₁ x T₂ = P₂ x T₁ ∴ P₂ = P₁ x T₂ / T₁
For the second process, we have an amount of n moles of water which will be released when the copper sulfate is heated. In this case, to determine the value of the the water gas we will use the gas law:
PV = nRT ∴ P = nRT/V
n will we calculated from the quantity of sample.
2.50 g CuSo₄ 5H₂O x 1 mol/ 249.69 g = 0.01 mol CuSo₄ 5H₂O
the amount water of hydration is
= 0.01 mol CuSo₄ 5H₂O * 5 mol H₂O / 1 mol CuSo₄ 5H₂O
= 0.05 mo H₂O
pressure of dry air at the final temperature,
P₂ = 1 atm x 500 K/ 300 K = 1.67 atm
Pressure of water :
P (H₂O) 0.05 mol x 0.08206 Latm/kmol x 500 K/ 4 L = 0.5 atm
∴ Total Pressure = 1.67 atm
H2O Pressure = 0.5 atm
Answer:one gram by 1oC
Explanation: you will need to know the value of water's specific heat
Given:
No of atoms present= 8.022 x 10^23 atoms
Now we know that 1 mole= 6.022 x 10^23 atoms
Hence number of moles present in 8.022 x 10^23 atoms is calculated as below.
Number of moles
= 8.022 x 10^23/6.022x 10^23
=1.3 moles.
Hence we have 1.3 moles present.