Answer:
616.223684211 N
Explanation:
= Resistive force on the wheel = 115 N
F = Force acting on sprocket
= Radius of sprocket = 4.75 cm
= Radius of wheel = 25 cm
Moment of inertia is given by

Torque

Torque is given by

The force on the chain is 616.223684211 N
Answer:
Em₀ = 245 J
Explanation:
We can solve this problem with the concepts of energy conservation, we assume that there is no friction with the air.
Initial energy the highest point
Em₀ = U
Em₀ = m g h
The height can be found with trigonometry
The length of the pendulum is L and the length for the angle of 60 ° is L ’, therefore the height from the lowest point is
h = L - L’
cos θ = L ’/ L
L ’= L cos θ
h = L (1 - cos θ)
We replace
Em₀ = m g L (1- cos θ)
Let's calculate
Em₀ = 10 9.8 5.0 (1 - cos 60)
Em₀ = 245 J
Answer:
The distance between two posts
Explanation:
As the students have already measured the amount of time necessary for the wave to oscillate up and down that is on the string between two posts,They have to measure the speed of the wave.
ie v=fλ
<em>They have to measure distance between the posts.
</em>
Because wavelength is equal to the distance between the posts ie full length of string.
The frequency of the wave is calculated by
f=
1/T
Where is the time period which the students have calculated ie the amount of time taken to oscillate up and down,
Thus the wave speed is calculated using formula
v=λ/T
Answer:
A) I = Io 0.578, B) he light that leaves the polarized is completely polarized, being perpendicular to the axis of the second filter
Explanation:
A) Light passing through a polarizer must comply with the / bad law
I = Io cos2 tea
Where is at the angle of the polarizer and incident light
I = Io cos2 45
I = Io 0.578
Therefore the beam intensity is 0.578 of the incident intensity
.B) the light that leaves the polarized is completely polarized, being perpendicular to the axis of the second filter
C6H14
Gaseous state
it's unsaturated hence gaseous