Answer:
0.0065 m³
Explanation:
Apparent weight = weight − buoyancy
32 N = 96 N − (1000 kg/m³) (9.8 m/s²) V
V = 0.0065 m³
D. When a substance reacts with another substance, it shows its chemical property
Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
3 protons should be your answer
Answer:
Total mass of combination = 2+3+5 = 10kg.
Acceleration produced = 2m/s^2
hence force =( total mass × acceleration)= (2×10)= 20 N.
Net force on 3kg block = acceleration × mass = (2 × 2 )= 4 N
applied force on 2 kg block = 20N
Force between 2 kg and 3 kg block = (20-4) = 16N. ans
Net force on 3 kg block = 3 × 2 =6N.
Applied force on 3 kg block due to 2 kg block = 16N.
hence, force between 3 kg and 5 kg block = (16-6) = 10N .
answers:-
(a) 20 N
(b) 16N
(c) 10 N