Answer:
Final angular velocity is 35rpm
Explanation:
Angular velocity is given by the equation:
I1w1i + I2w2i = I1w1f -I2w2f
But the two disks are identical, so Ii =I2
wf can be calculated using
wf = w1i - w2i/2
Given: w1i =50rpm w2i= 30rpm
wf= (50 + 20) / 2
wf= 70/2 = 35rpm
Answer:
C) Use a battery with more voltage.
Explanation:
The equation for the magnetic field around a coil is given by,
B = μ₀NI
where,
B = Magnetic flux density
μ₀ = permeability
N = number of turns per meter
I = Current in the wire
So when using a higher voltage battery, more current passes through the battery as resistance of the wire remains the same.
Answer:
v = 5.166 10² m / s
Explanation:
We can solve this exercise using the kinematics equations
v = v₀ + at
as the bullet starts from rest its initial velocity is zero
v = a t
let's calculate
v = 6.3 10⁵ 8.2 10⁻⁴
v = 5.166 10² m / s
Answer:
Impedance increases for frequencies below resonance and decreases for the frequencies above resonance
Explanation:
See attached file
Explanation:
(a) The force exerted by the electric field on the plastic sphere is equal to

where

is the charge of the sphere and E is the strength of the electric field. This force should balance the weight of the sphere:

where m is the mass of the sphere and g is the gravitational acceleration.
Since the two forces must be equal, we have:

and so we find the intensity of the electric field

(b) Now let's find the direction of the field. The electric force must balance the weight of the sphere, which is directed downward, so the electric force should be directed upward. Since the charge is negative, the force is opposite to the electric field direction, and so the direction of the electric field is downward.