The speed of a electron that is accelerated from rest through an electric potential difference of 120 V is 
<h3>
How to calculate the speed of the electron?</h3>
We know, that the energy of the system is always conserved.
Using the Law of Conservation of energy,
U=0
Here, K is the kinetic energy and U is the potential energy.
Now, substituting the formula of U and K, we get:
=0------(1)
Here,
m is the mass of the electron
v is the speed of the electron
q is the charge on the electron
V is the potential difference
Let
and
represent the final and initial speed.
Here,
=0
Solving for
, we get:


=6.49
m/s
To learn more about the conservation of energy, refer to:
brainly.com/question/2137260
#SPJ4
The answer is "False". The force acting on the object is 27 N.
According to Newton's second law, when a force <em>F</em> acts on am object of mass <em>m</em>, it produces an acceleration <em>a</em>. The force is given by the expression,

Thus, if the body has a mass of 9.0 kg and if it has an acceleration of 3 m/s², then, on substituting the values in the equation for force,

Thus, it can be seen that the force acting on the body is 27 N and not 3 N as is mentioned in the statement. Hence the statement is false.
I would believe it to be C. Gold, but I'm not quite sure
<span>D. Atoms of all elements contain protons, but the number of protons is different for every element.
</span>
Answer:
For real gas the volume of a given mass of gas will increase with increase in temperature.
Explanation:
With the piston head locked in place and place above the fire,the volume of the gas will increase,because the volume of a given mass of gas increases with increase temperature.