Answer:
i)20369 photons
ii) 40 ps
Explanation:
Momentum of one Sodium atom:

In other to stop it, it must absorb the same momentum in photons:

Now, for the minimun time, we use the speed of light and the wavelength. For the n photons:

Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Answer:

Explanation:
As we know that magnetic field due to torroid is given as

this is approximately constant magnetic field along the axis of the torroid
now the flux linked with one coil of the torroid is given as


now total flux of N number of coils is given as

now we know that self inductance is the property of coil in which flux of the coil will link with the current in the coil
So we know that

