Answer:
A damped oscillation means an oscillation that fades away with time while Forced oscillations occur when an oscillating system is driven by a periodic force that is external to the oscillating system.
Explanation:
Damping is the reduction in amplitude (energy loss from the system) due to overcomings of external forces like friction or air resistance and other resistive forces. ... When a body oscillates by being influenced by an external periodic force, it is called forced oscillation.
<h2>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em></h2>
<em><u>Welcome</u></em><em><u> </u></em>
Answer:
The time taken for the commercial Jet liner to reach the end of its runway is 10.18 s.
Explanation:
Given;
average acceleration of the commercial Jet liner, a = 3g = 3 x 9.8 m/s² = 29.4 m/s²
distance traveled by the commercial Jet liner, s = 1542 m
The time taken for the commercial Jet liner to reach the end of its runway is calculated as follows;
s = ut + ¹/₂at²
where;
u is the initial velocity of the commercial Jet liner = 0
s = 0 + ¹/₂at²
s = ¹/₂at²
2s = at²

Therefore, the time taken for the commercial Jet liner to reach the end of its runway is 10.18 s.
nebulae, nebulæ, or nebulas) is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, nebula was a name for any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was once referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble and others.
Most nebulae are of vast size, even hundreds of light years in diameter.[3] Although denser than the space surrounding them, most nebulae are far less dense than any vacuum created on Earth – a nebular cloud the size of the Earth would have a total mass of only a few kilograms. Many nebulae are visible due to their fluorescence caused by the embedded hot stars, while others are so diffuse they can only be detected with long exposures and special filters. Some nebulae, are variably illuminated by T Tauri variable stars. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter, and eventually will become dense enough to form stars. The remaining material is then believed to form planets and other planetary system objects.
The range of objects called nebula are very diverse, have diverse origins, and final ends.
Contents <span> [hide] </span><span><span>1Observational history</span><span>2Formation</span><span><span>3Types of nebulae</span><span><span>3.1Classical types</span><span>3.2Diffuse nebulae</span><span><span>3.3Planetary nebulae</span><span>3.3.1Protoplanetary nebula</span></span><span>3.4Supernova remnants</span></span></span><span><span>4Notable named nebulae</span><span>4.1Nebula catalogs</span></span><span>5See also</span><span>6References</span><span>7<span>External links
</span></span></span>
Answer:
Kinetic Energy
Explanation:
Kinetic energy is energy due to motion.
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m