1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
e-lub [12.9K]
3 years ago
15

A resistor R1 is wired to a battery, then resistor R2 is added in series.

Physics
1 answer:
Reika [66]3 years ago
5 0

Answer:

a) The voltage on resistor R1 is less than before. Letter B.

b) The current through R1 is less than before. Letter B.

c) The resistance of the circuit went up by adding R2 in series. Letter A.

Explanation:

a) The new resistor R2 was added in series, that means the same current goes through both resistors (R1 and R2) and that the sum of the individual voltage drop of those resistors should be the same as the voltage of the source. Before there was only resistor R1 connected to the source, so all the voltage of the source was being delivered to that component, but now it is divided between R1 and R2. So the voltage on R1 is less than previously. Letter B.

b) A battery works as a voltage source, so assuming it's charged, it delivers a value of voltage to the circuit, while the current flow through it is defined by the equivalent resistance across the terminals. Since the new resistor was added in series the total resistance of the circuit went up and the current delivered by the battery went down. Letter B.

c) Since the equivalent resistance for a series connection is the sum of the resistors, R12 = R1 + R2, the resistence went up. Letter A.

You might be interested in
I’ll give brainliest if it’s correct ;-;z
BlackZzzverrR [31]

Explanation:

what is the question? could you pls provide it

6 0
3 years ago
Water is stored in 5 places on earth.Name each place an dnote the phrase that water is in liquid solid,gas
podryga [215]
Atmosphere - gas
sea and oceans - liquid and solid
land -liquid and solid
living things and plants - liquid


6 0
3 years ago
a ballistic pendulum is used to measure the speed of high-speed projectiles. A 6 g bullet A is fired into a 1 kg wood block B su
Galina-37 [17]

Answer:

(a) v-bullet = 399.04 m/s

(b) I = 2.38 kg m/s

(c) T = 2.59 N

Explanation:

(a) To calculate the initial speed of the bullet, you first take into account that the kinetic energy of both wood block and bullet, just after the bullet impacts the block, is equal to the potential gravitational energy of block and bullet when the cord is at 60° respect to the vertical.

The potential energy is given by:

U=(M+m)gh       (1)

U: potential energy

M: mass of the wood block = 1 kg

m: mass of the bullet = 6g = 6.0*10^-3 kg

g: gravitational constant = 9.8m/s^2

h: distance to the ground

The distance to the ground is calculate d by using the information about the length of the cord and the degrees of the cord respect to the vertical:

h=l-lsin\theta\\\\h=2.2m-2,2m\ sin60\°=0.29m

The potential energy is:

U=(1kg+6*10^{-3}kg)(9.8m/s^2)(0.29m)=2.85J

Next, the potential energy is equal to kinetic energy of the block and the bullet at the beginning of its motion:

U=\frac{1}{2}(M+m)v^2\\\\v=\sqrt{2\frac{U}{M+m}}=\sqrt{2\frac{2.85J}{1kg+6*10^{-3}kg}}=2.38\frac{m}{s}

Next, you use the momentum conservation law, in order to calculate the speed of the bullet before the impact:

Mv_1+mv_2=(M+m)v    (2)

v1: initial velocity of the wood block = 0m/s

v2: initial speed of the bullet

v: speed of bullet and block = 2.38m/s

You solve the equation (2) for v2:

M(0)+mv_2=(M+m)v    

v_2=\frac{M+m}{m}v=\frac{1kg+6*10^{-3}kg}{6*10^{-3}kg}(2.38m/s)\\\\v_2=399.04\frac{m}{s}

The speed of the bullet before the impact with the wood block is 399.04 m/s

(b) The impulse is gibe by the change in the velocity of the block, multiplied by the mass of the block:

I=M\Delta v=M(v-v_1)=(1kg)(2.38m/s-0m/s)=2.38kg\frac{m}{s}

The impulse is 2.38 kgm/s

(c) The force on the cord after the impact is equal to the centripetal force over the block and bullet. That is:

T=F_c=(M+m)\frac{v^2}{l}=(1.006kg)\frac{(2.38m/s)^2}{2.2m}=2.59N    

The force on the cord after the impact is 2.59N

4 0
3 years ago
In a lab experiment, a student is trying to apply the conservation of momentum. Two identical balls, each with a mass of 1.0 kg,
Studentka2010 [4]

Answer:

Second Trial satisfy principle of conservation of momentum

Explanation:

Given mass of ball A and ball B =\ 1.0\ Kg.

Let mass of ball A and B\ is\ m  

Final velocity of ball A\ is\ v_1

Final velocity of ball B\ is\ v_2

initial velocity of ball A\ is\ u_1

Initial velocity of ball B\ is\ u_2

Momentum after collision =mv_1+mv_2

Momentum before collision = mu_1+mu_2

Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.

Now, mu_1+mu_2=mv_1+mv_2

Plugging each trial in this equation we get,

First Trial

mu_1+mu_2=mv_1+mv_2\\1(1)+1(-2)=1(-2)+1(-1)\\1-2=-2-1\\-1=-3

momentum before collision \neq moment after collision

Second Trial

mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1.5)=1(-.5)+1(-.5)\\.5-1.5=-.5-.5\\-1=-1

moment before collision = moment after collision

Third Trial

mu_1+mu_2=mv_1+mv_2\\1(2)+1(1)=1(1)+1(-2)\\2+1=1-2\\3=-1

momentum before collision \neq moment after collision

Fourth Trial

mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1)=1(1.5)+1(-1.5)\\.5-1=1.5-1.5\\-.5=0

momentum before collision \neq moment after collision

We can see only Trial- 2 shows the conservation of momentum in a closed system.

4 0
3 years ago
Read 2 more answers
A Bullet Off mass 100 gm is fired From A Gun Off mass 5 Kg. If the backward velocity of the gun's 5 m / s, what is forward veloc
Elena L [17]

Answer:

250 m/s

Explanation:

The mass of the bullet, m₁ = 100 g = 0.1 kg

The mass of the gun, m₂ = 5 kg

The backward velocity of the gun, v₂ = -5 m/s

Given that the momentum is conserved, we have;

The total initial momentum = The total final momentum

The gun and the bullet are at rest, therefore, we have;

The initial momentum = 0

The total final momentum = m₁·v₁ + m₂·v₂

Where;

v₁ = The forward velocity of the bullet

Therefore, we get;

m₁·v₁ + m₂·v₂ = 0

0.1 kg × v₁ + 5 kg × (-5 m/s) = 0

0.1 kg × v₁ = 5 kg × 5 m/s

v₁ = (5 kg × 5 m/s)/(0.1 kg) = 250 m/s

The forward velocity of the bullet, v₁ = 250 m/s

6 0
3 years ago
Other questions:
  • Vector a s is 2.80 cm long and is 60.0° above the x-axis in the first quadrant. vector b s is 1.90 cm long and is 60.0° below th
    12·1 answer
  • What is gravity? I need help.
    14·2 answers
  • What is the biggest current disadvantage to using gas hydrates as a form of energy?
    5·2 answers
  • A 150 g egg is dropped from 3.0 meters. The egg is
    8·1 answer
  • The deep scattering layer (DSL):_________
    12·1 answer
  • The ability of atoms to attract electrons from surrounding atoms is called
    11·2 answers
  • You are on an interstellar mission from the Earth to the 8,7 light-years distant star Sirius. Your spaceship can travel with 70%
    6·1 answer
  • Please answer me my question​
    5·1 answer
  • Which is a property of every<br> mixture?
    10·1 answer
  • Please help with this i am not good with this
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!