The mass of an object determines the object's inertia.
The density would increase because you still have the same amount of weight, but it is just packed more tightly in a smaller object.
Answer:
<h3>25km/hr</h3>
Explanation:
Velocity is the change in displacement of a body with respect to time.
Velocity - Displacement/time
Given
displacement = 76km
Time = 3hours
Substitute the given parameters into the formula;
Velocity = 75km/3hrs
Velocity = 25km/hr
Hence the velocity of the narwhal is 25km/hr
Answer:
Well I'm going to go with A.
Explanation:
As per the question the mass of the boy is 40 kg.
The boy sits on a chair.
We are asked to calculate the force exerted by the boy on the chair at sea level.
The force exerted by boy on the chair while sitting on it is nothing else except the force of gravity of earth i.e the weight of the body .The direction of that force is vertically downward.
At sea level the acceleration due to gravity g = 9.8 m/s^2
Therefore, the weight of the boy [m is the mass of the body]
we have m = 40 kg.
Therefore, w = 40 kg ×9.8 m/s^2
=392 N kg m/s^2
= 392 N
392 is not an option but I'm guessing you can round down 2 .to option A. 390...?
Answer:
22.17 degree
Explanation:
n = 1.52
Angle of incidence, i = 35 degree
Let the angle of refraction is r.
use the Snell's law
n = Sin i / Sin r
Sin r = Sin i / n = Sin 35 / 1 .52
Sin r = 0.37735
r = 22.17 degree
Thus, the ray is refracted at an angle of 22.17 degree.