One side drops into fault
Answer:
The F₂ molecule is formed by single bonds alone.
Explanation:
The octate rule dictates that atoms have a preference to have 8 electrons in their valence shells. Considering this rule we can analyse how the electrons are distributed in the molecules and see how the atoms bond to obbey the rule.
The fluorine atom has 7 electrons in its valence shell. This means that it needs one more electron to reach stability. Therefore, when two fluorine atoms combine, they share one electron each, forming a single bond.
The atoms of the other molecules need more than one electron to reach the octate, therefore they need to share more electrons, forming double and triple bonds.
Melting points and boiling points of molecular compound are usually lower than ionic compounds. This is so as only a small amount of energy is required to overcome the weak intermolecular forces of attraction (Van de Waals forces) thus having lower m.p. and b.p.
Ionic compounds require a large amount of energy to overcome the strong electrostatic forces of attraction between the ions, hence having higher mp and bp
Answer:
ΔG°rxn = -69.0 kJ
Explanation:
Let's consider the following thermochemical equation.
N₂O(g) + NO₂(g) → 3 NO(g) ΔG°rxn = -23.0 kJ
Since ΔG°rxn < 0, this reaction is exergonic, that is, 23.0 kJ of energy are released. The Gibbs free energy is an extensive property, meaning that it depends on the amount of matter. Then, if we multiply the amount of matter by 3 (by multiplying the stoichiometric coefficients by 3), the ΔG°rxn will also be tripled.
3 N₂O(g) + 3 NO₂(g) → 9 NO(g) ΔG°rxn = -69.0 kJ
Answer and Explanation:
The balanced chemical equations are as follows:
The chemical formula of oxalic is 
In the case when oxalic acts reacted with the water so here the oxalic acid eliminates one proton that leads to the development of mono acids
After that, the second step derives that when oxalic acid is in aqueous solution eliminates other proton so it represent the polyprotic acid
Now the chemical equations are as follows:
Elimination of one proton

Now the elimination of other proton
