1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
romanna [79]
3 years ago
15

After a mass weighing 10 pounds is attached to a 5-foot spring, the spring measures 7 feet. This mass is removed and replaced wi

th another mass that weighs 8 pounds. The entire system is placed in a medium that offers a damping force that is numerically equal to the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from a point foot below the equilibrium position with a downward velocity of 1 ft/s. (b) Express the equation of motion in the form given in (23). (c) Find the times at which the mass passes through the equilibrium position heading dow

Physics
1 answer:
hoa [83]3 years ago
7 0

Answer:

a) x(t) = e^(^-^2^t^)[ cos ( 4t ) + 0.75*sin ( 4t ) ]

b) x(t) = 1.25*e^(^-^a^t^)sin(4t + 0.64350)

c) t = ( 0.7957*k - 0.160875 )s  with k = 0, 1 , 2 , 3 , ....

Explanation:

Declaring variables:-

- The mass = m

- Positive damping constant = β

- Spring constant = k

- Gravitational constant, g = 32.2 ft/s^2

Given:-

- The attached initial weight, Wi = 10 lbs

- The attached second weight, Wf = 8 lbs

- Length of un-extended spring, Li = 5 ft

- The extended length, Lf = 7 ft

Find:-

(a) Find the equation of motion if the mass is initially released from a point foot below the equilibrium position with a downward velocity of 1 ft/s.

(b) Express the equation of motion in the form given in (23)

(c) Find the times at which the mass passes through the equilibrium position heading dow

Solution:-

- We will first evaluate the constants m , k and β using conditions given:

                         m = Wf / g

                         m = 8 / 32 = 0.25 slugs.

- We will use the equilibrium condition in (vertical direction) on the spring when the weight of Wi = 10 lbs was attached onto the spring. The spring restoring force (Fs) acts up while weight attached combats it by pointing downward.

                         Fs - Wi = 0

- From Hooke's Law we have:

                         Fs = Wi = k*ΔL   .......  ΔL : Extension of spring

                         k = W / ΔL = W / ( Lf - Li )

                         k = 10 / ( 7 - 5 )

                         k = 5 lb/ft

- Since we have insufficient information about the damping constant of the medium we will assume it as unit. β = 1.

- Now, we will consider the dynamic motion of the spring attached with mass with weight Wf damped in a medium with constant β. We will use Newton's second equation of motion for the spring.

                        F_net = m*a

Where, F_net : Net force acting on the attached mass

            a : Acceleration of the block

- There are two forces acting on the spring ( Damping force - D and restoring force of spring (ks) ). We will consider a displacement of mass in vertical direction as (x).

                       - D - Fs = m*a

- Using hooke's law and damping force (D) is proportional to velocity of attached mass. We have:

                       - β*dx/dt - k*x = m*( d^2 x / dt^2)

 - Plug in the constants:

                          \frac{d^2x}{dt^2} + 4*\frac{dx}{dt} + 20*x = 0

- Now solve the derived ODE. The Auxiliary equation for the above ODE is:  

                         s^2 + 4s + 20 = 0              

- Solve the quadratic and evaluate roots.

                        s = -2 +/- 4i ....... (Complex Roots)

- The complementary solution (yc) for complex roots of the auxiliary is:

                        xc (t) = e^(^-^2^t^)[ A*cos ( 4t ) + B*sin ( 4t ) ]

- Use the given initial conditions and evaluate constants A and B :

                       x ( 0 ) = 1 ft , x ' (0) = 1 ft/s

                       xc (0) = e^(^0^)[ A*cos ( 0 ) + B*sin ( 0 ) ] = 1* [ A + 0 ] = 1\\\\A = 1\\\\xc'(t) = -2*e^(^-^2^t^)[ A*cos ( 4t ) + B*sin ( 4t ) ] + e^(^-^2^t^)[ -4A*sin ( 4t ) + 4B*cos ( 4t ) ]\\\\xc'(0) = -2*e^(^0^)[ cos ( 0 ) + B*sin ( 0 ) ] + e^(^0^)[ -4sin ( 0 ) + 4B*cos ( 0 ) ]\\\\ 1 = -2*[ 1 + 0 ] + 1*[ 0 + 4B]\\\\B = 3 / 4 = 0.75

- The complementary solution becomes:

                         xc (t) = e^(^-^2^t^)[ cos ( 4t ) + 0.75*sin ( 4t ) ]

- Since there is no excitation force acting on the system( Homogenous ). The particular solution does not exist and the general solution to equation of motion is:

                         x(t) = e^(^-^2^t^)[ cos ( 4t ) + 0.75*sin ( 4t ) ]

- An alternative form of the displacement (x) - Time (t) motion is:

                        x(t) = Pe^(^-^a^t^)sin(w_dt + theta)

Where,

                        P = √ ( A^2 + B^2)   .... Amplitude

                        theta (θ) = arctan ( B / A )

                        Auxiliary roots = ( a +/- bi) ..... a = -2 , b = 4  

                        wd = w*√ 1 - ρ^2 = w = b = 4 .......... (β = 1 => ρ = 0)

- Evaluate P and theta (θ):

                        P = √ ( 1^2 + 0.75^2) = 1.25 m

                        theta (θ) = arctan ( 3 / 4 ) = 0.64350 rads

- The alternative form of Equation (23) is:

                        x(t) = 1.25*e^(^-^a^t^)sin(4t + 0.64350)

c)

- To determine the range of times (t) when the mass passes the the equilibrium position can be evaluated by setting x(t) form (23) equal to 0.

                       x(t) = 1.25*e^(^-^a^t^)sin(4t + 0.64350) = 0\\\\e^(^-^a^t^) \neq 0 , sin(4t + 0.64350) = 0\\\\4t + 0.64350 = 0 , \pi , 2\pi , 3\pi = k\pi\ \ .......\ \ (k = 0, 1 , 2 , 3 , ...)\\\\t = \frac{k\pi - 0.64350}{4} = k*0.78571429 - 0.160875

- The domain for time (t) is as follows:

                       t = ( 0.7957*k - 0.160875 )s  with k = 0, 1 , 2 , 3 , ....

                         

You might be interested in
Models of four atoms are shown as figures A, B, C, and D. Which two atoms represent isotopes of the same element?
timurjin [86]
C and d have the same amount of protons and electrons
3 0
3 years ago
Which of the following expressions for power or dimensionally correct?
Slav-nsk [51]

Power=F.V

dimension: ML^2T^-2


8 0
3 years ago
Is tomato a fruit or veggie?
bonufazy [111]

Answer:

fruit

Explanation:

because its seeds are on the inside

8 0
3 years ago
Read 2 more answers
I WILL MARK YOU BRAINLIEST FOR A QUICK AND GOOD ANSWER PLEASE NO SPAM what are elastic and inelastic distortion?
Montano1993 [528]
As far as I know, elastic distortion (or elastic deformation or temporary distortion) is the case when an object is deformed by virtue of a cause and after the cause is removed, it regains its original shape in a finite amount of time. If it fails to attain its original shape in finite amount of time or takes infinite time it becomes plastic or permanent distortion.

Inelastic materials, simply put, are non elastic materials. They do not show a fixed trend of deformation vs applied force; in fact, they might not deform at all (rigid materials) or the deformation observed is not completely recoverable; on removal of the applied force, the material doesn't return to its original shape, but to a permanent deformed shape. Such materials are called Plastic materials. 

A typical material like steel shows all these forms under different conditions of loading (applied force). For extremely low magnitudes of forces, it is practically rigid. Increasing magnitudes of force show a linear elastic response, while further increase show a non-linear, plastic response, till rupture occurs when the material breaks.
4 0
3 years ago
Read 2 more answers
Question 4
saveliy_v [14]

Answer:

It is the tendency

of an object to resist any change in its state of motion .

Explanation:

if I am right mark my answer as brainliest

5 0
2 years ago
Other questions:
  • Neil has 3 partially full cans of white pants. they contain 1/3 gallon, 1/5 gallon,and 1/2 gallon of paint About how much paint
    5·1 answer
  • Winds tend to rotate in a counter clockwise direction in the ___ (northern or southern) Hemisphere as they move into a low press
    14·2 answers
  • If we wanted to increase the internal energy of the system by 10 J, we could...
    15·1 answer
  • What holds the atoms together in a covalent bond
    10·2 answers
  • Which best describes cosmic microwave background radiation? radiation thought to exist but not yet measured radiation predicted
    8·1 answer
  • Using the strap at an angle of 31.0° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15.0
    12·1 answer
  • Qliestion 5 (1 point)
    7·1 answer
  • What is the difference between total distance covered vs. total displacement of the rube goldberg
    5·1 answer
  • How much work is done lifting a 9.10-kg box straight up onto a shelf that is 1.80 m high
    12·1 answer
  • A cyclist rides at a constant speed of 4. 5 m/s around a curve. If the centripetal acceleration is 29 m/s2, what is the radius o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!