Answer:
2.47 s
Explanation:
Convert the final velocity to m/s.
We have the acceleration of the gazelle, 4.5 m/s².
We can assume the gazelle starts at an initial velocity of 0 m/s in order to determine how much time it requires to reach a final velocity of 11.1111 m/s.
We want to find the time t.
Find the constant acceleration equation that contains all four of these variables.
Substitute the known values into the equation.
- 11.1111 = 0 + (4.5)t
- 11.1111 = 4.5t
- t = 2.469133333
The Thompson's gazelle requires a time of 2.47 s to reach a speed of 40 km/h (11.1111 m/s).
Answer:
525 V
Explanation:
A = Area = 
= Rate of change of magnetic field =
(assumed)
Induced electromotive force is given by

The induced electromotive force is 525 V
Answer:

Explanation:
From the question we are told that:
Density 
Frequency
Length
Generally the equation for Frequency is mathematically given by

Therefore



Answer:
Lilly's speed is two times John's speed.
Explanation:
m = Mass
a = Acceleration
t = Time taken
u = Initial velocity
v = Final velocity
The force they apply on each other will be equal




Hence, Lilly's speed is two times John's speed.
True. Solvents are always materials that contain the solute. Water contains the salt, in this instance.