Since the question is incomplete, the table has been searched in order to comply with the question.
Based on the table that I have provided, the order of increasing
depth from shallowest to deepest are the following; A,B,C,D,E. The reason that
this is the order to be chosen because the one responsible for making water
dense is the salt that is on the water and by that, the base is likely to sink
whereas the ones with less salt won’t be as thick compared those who have much
salt and will skim on its top.
Answer:
4m/s in the direction of the turn
Explanation:
The velocity of an object is the rate of change of its position with respect to a frame of reference.
Assuming the runner stays the same speed as he turns, his velocity will be 4m/s in the speed he turns.
<span>3.68 liters
First, determine the number of moles of butane you have. Start with the atomic weights of the involved elements:
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Molar mass butane = 4*12.0107 + 10*1.00794 = 58.1222 g/mol
Moles butane = 2.20 g / 58.1222 g/mol = 0.037851286
Looking at the balanced equation for the reaction which is
2 C4H10(g)+13 O2(g)→8 CO2(g)+10 H2O(l)
It indicates that for every 2 moles of butane used, 8 moles of carbon dioxide is produced. Simplified, for each mole of butane, 4 moles of CO2 are produced. So let's calculate how many moles of CO2 we have:
0.037851286 mol * 4 = 0.151405143 mol
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant ( 0.082057338 L*atm/(K*mol) )
T = absolute temperature (23C + 273.15K = 296.15K)
So let's solve the formula for V and the calculate using known values:
PV = nRT
V = nRT/P
V = (0.151405143 mol) (0.082057338 L*atm/(K*mol))(296.15K)/(1 atm)
V = (3.679338871 L*atm)/(1 atm)
V = 3.679338871 L
So the volume of CO2 produced will occupy 3.68 liters.</span>
Answer:
Change in enthalpy for the reaction is -536 kJ
Explanation:
- Overall chemical reaction can be represented a summation of two given elementary steps with slight modification.
- Take reaction (1a) and divide stoichiometric coefficients by 2
- Take reverse reaction (2a) and divide stoichiometric coefficient by 2
- Then add these two modified elementary steps to get overall chemical reaction
is an additive property. hence value of
will be changed in accordance with modification


--------------------------------------------------------------------------------------------------------------

When heated, particles vibrate faster, thus increasing the distance between one another. The distance between these particles results in changes of state. Therefore, increased molecular motion results in expansion of an object. This works vice versa for cooling. As the vibrations slow down, the particles become closer together. This results in contraction.