<h3>ANSWER:</h3>
(C) KBr
<h3>EXPLANATION:</h3>
An ionic compound is made up of a metal and a nonmetal. K is a metal while bromine is a nonmetal. Thus K transfers its one electron to bromine in order to form an ionic compound.
A is the answer, and put the choices
Answer:
None of the options are correct. The correct answer is:
56.67g
Explanation:
N2 + 3H2 —> 2NH3
Molar Mass of NH3 = 14 + (3x1) = 14 + 3 = 17g/mol
Mass of NH3 from the balanced equation = 2 x 17 = 34g
Molar Mass of H2 = 2x1 = 2g/mol
Mass of H2 from the balanced equation = 3 x 2 = 6g
From the equation,
6g of H2 produced 34g of NH3.
Therefore, 10g of H2 will produce = (10 x 34)/6 = 56.67g of NH3
Therefore, 56.67g of NH3 are produced
Answer:
c. The reaction will proceed rapidly from left to right.
Explanation:
The variation of the free Gibbs energy doesn't tell anything about the speed of reaction.
On the other hand, when ΔGo is negative: the reaction is spontaneous, thermodynamically favourable, and the products are more stable than the reactants
Answer:
Products are favored.
Explanation:
The acid-base reaction of CH₃COOH (acid) with NH₃ (base) produce:
CH₃COOH + NH₃ ⇄ CH₃COO⁻ + NH₄⁺ Kr = ?
It is possible to know Kr of the reaction by the sum of acidic dissociations of the half-reactions. That is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ Ka = 1.8x10⁻⁵
NH₃ + H⁺ ⇄ NH₄⁺ 1/Ka = 1/ 5.6x10⁻¹⁰ = 1.8x10⁹
___________________________________
CH₃COOH + NH₃ ⇄ CH₃COO⁻ + NH₄⁺ Kr = 1.8x10⁻⁵×1.8x10⁹ = <em>3.2x10⁴</em>
<em> </em>
As Kr is defined as:
Kr = [CH₃COO⁻] [NH₄⁺] / [CH₃COOH] [NH₃]
And Kr is > 1
[CH₃COO⁻] [NH₄⁺] > [CH₃COOH] [NH₃],
showing <em>products are favored</em>.