Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K
Answer:
1) 950 mL
2) 625 mmHg
3) 426 mL
Explanation:
1) This is the relationship between pressure and volume. This relationship looks like this:
P1*V1 = P2*V2
This means the first pressure times the initial volume is equal to the second pressure times the second volume. We are solving for the second volume. First, convert the mmHg to atm and the mL to L.
1 L * 1 atm = 1.053 atm * X
X = 0.95 L or 950 mL
2) This is the same concept as the last one. :) We don't have to convert the mmHg to atm since the answer wants it in mmHg.
750 mmHg * 0.25 L = 0.3 L * X
X = 625 mmHg
3) The relationship between volume and temperature is similar to the one between pressure and temperature (like the problem in your last question). Remember to convert degrees C to Kelvin and mL to L.
V1 / T1 = V2 / T2
0.4 L / 303 K = X / 323 K
X = 0.426 L pr 426 mL
These problems become much easier once you learn the relationships between the different variables (temp, pressure, volume, etc.) When you have a problem like this, I like to first determine what relationship I am dealing with and then write out what I have and what I am solving for. This helps with organizing the problem. Then just solve it like a normal algebra problem. Always remember to convert temp to Kelvin, mL to L, and pressure to atm (unless it wants it in a different unit, then just make sure all the units match).
Good luck with you studies! :)
The mass of 6.12 moles of arsenic (As) is calculated to be approximately 459g.
HOW TO CALCULATE MASS:
The mass of a substance can be calculated by multiplying the number of moles of a substance by its molar mass. That is;
Mass of Arsenic = no. of moles of As × molar mass of As.
According to this question, 6.12 moles of arsenic was given and its molar mass is 74.92g/mol.
Mass of As = 6.12 mol × 74.92g/mol
Mass of As = 459g
Therefore, the mass of 6.12 moles of arsenic (As) is calculated to be approximately 459g.
Learn more about mass calculations at: brainly.com/question/8101390