Answer:
Your answer is A. They will show even dispersion to get water.
Explanation:
Well the elements would be N, P, As, Sb, and Bi. Their electron configuration would be N= [He] 2s2 2p3, P= 1s2 2s2 2p6 3s2 3p3, As= [Ar] 3d10 4s2 4p3, Sb= Kr 4d10 5s2 5p3, and Bi= Xe 4f14 5d10 6s2 6p3.<span />
Answer:
4.12 mol
Explanation:
Given data:
Moles of LiOH required = ?
Volume of solution = 4.2 L
Molarity of solution = 0.98 M
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
we will calculate the moles from above given formula.
0.98 M = number of moles / 4.2 L
0.98 M × 4.2 L = number of moles
Number of moles = 0.98 M × 4.2 L
Number of moles = 4.12 mol (M = mol/L)
Answer:
- rows and columns
- period
- atomic orbitals
4.similar properties
5.electrons are very reactive
Answer:
See explanation
Explanation:
According to Hund's rule, electrons must occur singly first before pairing takes place.
If I want to fill six electrons into orbitals, the filling of electrons will be as follows;
1s2 2s2 2p2.
The first four electrons are filled into the 1s and 2s levels having only one orbital each. The fifth and sixth electrons are filled into 2p orbitals. The 2p level have three degenerate orbitals. The two electrons are singly filled into each of the degenerate orbitals in accordance to Hund's rule.