1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
3 years ago
8

Taxonomists have noted that as the number of organisms decreases, ______.

Physics
1 answer:
Gwar [14]3 years ago
5 0

Taxonomists have noted that as the number of organisms decreases, <u>the more likely the organisms are to share similar characteristics.</u>

<u></u>

Explanation:

  • A taxonomist is a biologist that groups organisms into categories.
  • A plant taxonomist for example, might study the origins and relationships between different types of roses while an insect taxonomist might focus on the relationships between different types of beetles.
  • Taxonomy is the process of naming and classifying things such as animals and plants into groups within a larger system, according to their similarities and differences.
  • Taxonomy entails the description, naming, and classification of living things.
  • It helps us categorize organisms so we can more easily communicate biological information. Taxonomy uses hierarchical classification as a way to help scientists understand and organize the diversity of life on our planet.
  • A taxonomic characteristic may be defined as any expressed attribute of an organism that can be evaluated and that has two or more discontinuous states or conditions.
You might be interested in
An Olympic track runner starts from rest and has an acceleration of 2.4 m/s2 for 3.6 s, then has zero acceleration for the remai
rjkz [21]

Answer:

The runner's speed at the following times would remain 8.64 m/s.

Explanation:

Acceleration definition: Acceleration is rate of change in velocity of an object with respect to time.

In this case, after 3.6 seconds the acceleration is zero, it means that the velocity of the runner after 3.6 seconds is not changing and it will remain constant for the remainder of the race. Now, we have to find the velocity of the runner that he had after 3.6 seconds and that would be the runner's speed for the remainder of the race. For this we use first equation of motion.

First equation of motion:        Vf = Vi + a×t

Vf stands for final velocity

Vi stands for initial velocity

a stands for acceleration

t stands for time

In the question, it is mentioned that the runner starts from rest so its initial velocity (Vi) will be 0 m/s.

The acceleration (a) is given as 2.4 m/s²

The time (t) is given as 3.6 s

Now put the values of Vi, a and t in first equation of motion

                       Vf = Vi + a×t

                       Vf = 0 + 2.4×3.6

                       Vf = 2.4×3.6

                       Vf = 8.64 m/s

So,the runner's speed at the following times would remain 8.64 m/s.

5 0
3 years ago
An open container holds ice of mass 0.555 kg at a temperature of -16.6 ∘C . The mass of the container can be ignored. Heat is su
s2008m [1.1K]

Answer: A. 23.59 minutes.

              B. 249.65 minutes

Explanation: This question involves the concept of Latent Heat and specific heat capacities of water in solid phase.

<em>Latent heat </em><em>of fusion </em>is the total amount of heat rejected from the unit mass of water at 0 degree Celsius to convert completely into ice of 0 degree Celsius (and the heat required for vice-versa process).

<em>Specific heat capacity</em> of a substance is the amount of heat required by the unit mass of a substance to raise its temperature by 1 kelvin.

Here, <u>given that</u>:

  • mass of ice, m= 0.555 kg
  • temperature of ice, T= -16.6°C
  • rate of heat transfer, q=820 J.min^{-1}
  • specific heat of ice, c_{i}= 2100 J.kg^{-1}.K^{-1}
  • latent heat of fusion of ice, L_{i}=334\times10^{3}J.kg^{-1}

<u>Asked:</u>

1. Time require for the ice to start melting.

2. Time required to raise the temperature above freezing point.

Sol.: 1.

<u>We have the formula:</u>

Q=mc\Delta T

Using above equation we find the total heat required to bring the ice from -16.6°C to 0°C.

Q= 0.555\times2100\times16.6

Q= 19347.3 J

Now, we require 19347.3 joules of heat to bring the ice to 0°C  and then on further addition of heat it starts melting.

∴The time required before the ice starts to melt is the time required to bring the ice to 0°C.

t=\frac{Q}{q}

=\frac{19347.3}{820}

= 23.59 minutes.

Sol.: 2.

Next we need to find the time it takes before the temperature rises above freezing from the time when heating begins.

<em>Now comes the concept of Latent  heat into the play, the temperature does not starts rising for the ice as soon as it reaches at 0°C it takes significant amount of time to raise the temperature because the heat energy is being used to convert the phase of the water molecules from solid to liquid.</em>

From the above solution we have concluded that 23.59 minutes is required for the given ice to come to 0°C, now we need some extra amount of energy to convert this ice to liquid water of 0°C.

<u>We have the equation:</u> latent heat, Q_{L}= mL_{i}

Q_{L}= 0.555\times334\times10^{3}= 185370 J

<u>Now  the time required for supply of 185370 J:</u>

t=\frac{Q_{L}}{q}

t=\frac{185370}{820}

t= 226.06 minutes

∴ The time it takes before the temperature rises above freezing from the time when heating begins= 226.06 + 23.59

= 249.65 minutes

8 0
3 years ago
A car goes from 5 m/s to 25 m/s in 6 s. What is the acceleration of the car?
damaskus [11]

Answer:

5m/s

Explanation:

3 0
3 years ago
Two identical charges q placed 2.0 mapart exert forces of magnitude 4.0 N on each other What is the value of the charge q? a) q
katen-ka-za [31]

Answer:

c) 4.2*10^{-5}C

Explanation:

Coulomb's law says that the force exerted between two charges is inversely proportional to the square of distance between them, and is given by the expression:

F=\frac{kq_{1}q_{2}}{r^{2}}

where k is a proportionality constant with the value k=9*10^{9}\frac{Nm^{2}}{C^{2}}

In this case q_{1}=q_{2}=q, so we have:

F=\frac{kq^{2}}{r^{2}}

Solving the equation for q, we have:

kq^{2}=Fr^{2}

q^{2}=\frac{Fr^{2}}{k}

q=\sqrt{\frac{Fr^{2}}{k}}

Replacing the given values:

q=\sqrt{\frac{4.0N*(2.0m)^{2}}{9*10^{-9}\frac{Nm^{2}}{C^{2}}}}

q=4.2*10^{-5}C

3 0
3 years ago
How do force affect the acceleration of a body?<br><br>​
Arada [10]

The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.

3 0
3 years ago
Other questions:
  • Which process is a physical change?
    5·1 answer
  • The observation location A is located at &lt; 0.112, 0.247, 0 &gt; m. The conventional current running through the wire is 7.5 a
    15·1 answer
  • I tried the experiment of dropping candy into a liter of soda and caused a big explosion of foamy soda. Is that a physical or Ch
    13·1 answer
  • Why does water frozen in the cracks of a rock help to break down the rock? a) Water expands when frozen and chemically forces th
    9·1 answer
  • The small spheres that are moving through the circuit are the electric current. Current is the flow or movement of electrons. De
    10·2 answers
  • A speedboat is moving at a rate of 45 km per hour travels a distance of 27 km. How long did it take to go to 27 km.
    15·1 answer
  • An 8 Newton wooden block slides across a horizontal wooden floor at constant velocity. What is the magi notice of the force of k
    7·1 answer
  • Give me two examples of a pushing force and two examples of a pulling force:
    10·1 answer
  • An electric motor is rated at 900 W. How much force does it apply when moving
    11·1 answer
  • Roughly how many stars are in the Milky Way Galaxy?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!