Answer:
Gauss law states that the electric flux is defined as the electric field multiplied by the area of the surface in a plane perpendicular to the field.
Explanation:
Mathematically,
Φ=Q ϵo
Where;
Q is enclosed charge
ϵo is the permittivity of the free space
According to Gauss law, which states that the electric flux is defined as the electric field multiplied by the area of the surface in a plane perpendicular to the field.
Φ=Q ϵo
Where;
Q is enclosed charge
ϵo is the permittivity of the free space
If the cube is transformed into a sphere the total flux in the electric field remains unchanged or remains the same. This is because the gaussian law does not postulate that electric flux is dependent on the object in a plane. Hence, the transformation of the cube to a sphere does not affect the electric flux generated in the field.
To learn more about how the total flux through a sphere relates to the surface change, click brainly.com/question/4362789
#SPJ4
Speed = wavelength * Frequency
s = 247 /s * 1.4 m
s = 345.8 m/s
In short, Your Answer would be 345.8 m/s
Hope this helps!
Answer:
In a positive ion, the number of protons is larger than the number of electrons.
In a negative ion, the number of protons is smaller than the number of electrons.
Explanation:
Each proton carries a positive charge of one unit.
Each elec in tron carries a negative charge of one unit.
In an atom, there are as many protons as electrons. Hence, they are neutral.
However, in a positive ion, there are less negative charge than positive charge. Hence the net charge is positive. That also means that there are fewer negatively-charged electrons than positively-charged protons.
Similarly, in a negative ion, there are more negative charge than positive charge. Hence the net charge is negative. That also means that there are more negatively-charged electrons than positively-charged protons.
<em>Answer:</em>
<em>When </em><em>a </em><em>body </em><em>is </em><em>moving </em><em>on </em><em>a </em><em>circle </em><em>it </em><em>is </em><em>accelerating </em><em>because </em><em>centripetal </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>it </em><em>towards </em><em>the </em><em>center.</em>
<em>Please </em><em>see</em><em> the</em><em> attached</em><em> picture</em><em>.</em><em>.</em><em>.</em>
<em>From </em><em>the </em><em>above </em><em>diagram,</em><em>we </em><em>can </em><em>say </em><em>the </em><em>acceleration</em><em> </em><em>is </em><em>always </em><em>acting </em><em>on </em><em>the </em><em>body </em><em>when </em><em>it </em><em>moves </em><em>in </em><em>a </em><em>circle.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>