I'm not too sure about this one, I've been having second guesses on it myself. But, what I put is A. Velocity. That could be wrong though, so don't take my word for it! ;)
Complete Question:
A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rads/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to
Answer:
t= 16.7 sec.
Explanation:
As we are told that the wheel is accelerating uniformly, we can apply the definition of angular acceleration to its value:
γ = (ωf -ω₀) / t
If the wheel was at rest at t-= 0.00 s, the angular acceleration is given by the following equation:
γ = ωf / t = 25 rad/sec / 10 sec = 2.5 rad/sec².
When the power is shut off, as the deceleration is uniform, we can apply the same equation as above, with ωf = 0, and ω₀ = 25 rad/sec, and γ = -1.5 rad/sec, as follows:
γ= (ωf-ω₀) /Δt⇒Δt = (0-25 rad/sec) / (-1.5 rad/sec²) = 16.7 sec
Motion Energy
I am writing this so it can be more than 20 letters
When a car hits you in a rear end collision, the car initially has a momentum going in one direction. This causes your car to move in the same direction that car was moving even if you were at rest. So, for conservation of momentum, you initially have momentum going in the east direction for example, after the collision, you will have a change in momentum which causes you to have a velocity in the west direction. This is because you are initially at rest and then there is a sudden change in velocity so when you speed up, that momentum causes you to move backwards. If you don't have a properly adjusted neckrest you could may experience whiplash.