Answer:
approximately 30 degrees
Explanation:
If it takes the cannonball 2 seconds to reach the maximum height, we can use the analysis of the vertical component of the velocity and the fact that the acceleration of gravity is the one acting opposite to this initial vertical component
of the velocity. We know as well that at the top of the trajectory, the vertical component of the velocity is zero, and then the movement starts going down in it trajectory. So, the final velocity for the first part of the ascending movement is zero, giving us the following equation for the velocity under an accelerated movement (with acceleration of gravity "g" acting):

By knowing the vertical component of the initial velocity (19.6 m/s), and the actual magnitude of the total initial velocity (40 m/s), we can calculate what angle was the initial velocity vector forming above the horizontal. We use for such the fact that the sine of the angle relates the opposite side of a right angle triangle with the hypotenuse, and solve for the angle using the arcsin function:

which tells us that the closer answer shown is 
<span>In Coulomb's law, however, the
magnitude and sign of the electric force are determined by the electric
charge, rather than the mass, of an object. ... Thus, two negative
charges repel one another, while a positive charge attracts a negative
charge. The attraction or repulsion acts along the line between the two charges</span>
1) Try to head into the waves at some slight angle and the speed of the boat should be reduced.
2) In order to ride up and over the waves, the speed of the boat should be slow.
3) The less the speed of the boat, and the less strain will be put on the hull and superstructure.
Answer:
depth of well is 163.30 m
Explanation:
Given data
speed of sound = 343 m/s
timer = 6.25 s
to find out
depth of well
solution
let us consider depth d
so equation will be
depth = 1/2 ×g ×t² ..............1
and
depth = velocity of sound × time .................2
here we have given time 6.25 that is sum of 2 time
when stone reach at bottom that time
another is sound reach us after stone strike on bottom
so time 1 + time 2 = 6.25 s
so from equation 1 and 2 we get
1/2 ×g ×t² = velocity of sound × time
1/2 ×9.8 × t1² = 343 × (6.25 - t1 )
t1 = 5.77376 sec
so height = 1/2 ×g ×t²
height = 1/2 ×9.8 × (5.773)²
height = 163.30 m
Answer:
4 m/s
Explanation:
speed = distance/time
speed= 20/5 = 4
similarly for all no. the answer is constant,i.e. 4