To solve this problem, we must take two important steps. First we will convert all the given units, to international system. Later we will define the torque, which is given as the product between the radius of application of the force and the Force acting on the body. Mathematically the latter is,

Here,
r = Radius
F = Force
Now the units,

Replacing,


Therefore the torque that the muscle produces on the wrist is 
Answer: The 1st one is B. I'm pretty sure the 2nd one is A. and the 3rd one is D.
Explanation: I hope this helped, although I'm not sure for the second one
Normal force for the rock because that makes an object stable at its position.
static friction because micro-welts hold its particle on its position so it doesn't change in position by a potential energy. Gravity makes it stay on the ground because its force attraction between an object and the earth.
Hope this helps <span />
Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.