Answer:
1. 
2. 
3. 
Explanation:
¡Hola!
En este caso, dada la información para estos problemas, procedemos de la siguiente manera, basado en las leyes de los gases ideales:
1. Una masa de aire ocupa un volumen de 5 litros a una temperatura de 120 °C Cual será el nuevo volumen si la temperatura se reduce a la mitad:
Aqui, utilizamos la ley de Charles, asegurándonos que la temperatura está en Kelvin:

2. Un gas ideal ocupa un volumen de 4000 ml a una presión absoluta de 1500 kilo pascal Cual será la presión si el gas es comprimido lentamente hasta 750 kilo pascal a temperatura constante?
Aquí, utilizamos la ley de Boyle, dado que la temperatura se mantiene constante, calculando el volumen, ya que lo que se da es la presión final:

3. Un gas ocupa un volumen de 200 litros a 95°C y 782 mmHg Cual será el volumen ocupado por dicho gas a 65°C y 815 mmHg:
Aquí, utilizamos la ley combinada de los gases ideales, asegurándonos que las temperaturas están en Kelvin:

¡Saludos!
Answer:
4.9 x 10²²hockey pucks
Explanation:
Given parameters:
Number of moles of hockey = 0.0814moles
Unknown:
Number of pucks there = ?
Solution:
A mole of a substance is made up of Avogadro's number of particles.
Therefore;
1 mole of hockey pucks will contain 6.02 x 10²³ hockey pucks
0.0814 mole of hockey pucks will contain :
0.0814 x 6.02 x 10²³ = 4.9 x 10²²hockey pucks
Water has a chemical formula of H2O. This means that for every 2 moles of hydrogen and 1 mole of oxygen, one mole of water will be formed.
Note that hydrogen gas and oxygen gas are both biatomic molecules.
(1) (182 mol H2) x (1 mol H2O/ 1 mol H2) = 182 mol H2O
(2) (86 mol O2) x (2 mol H2O / 1 mol O2) = 172 mol H2O
We choose the smaller number of the two as the answer to this item. Thus, the answer to this question is 172 mol of H2O can be formed out of the given quantities.
Answer:
The mass left after 24.6 years is 25.0563 grams
Explanation:
The given parameters are;
The mass of the hydrogen-3 = 100 grams
The half life of hydrogen-3 which is also known as = 12.32 years
The formula for calculating half-life is given as follows;

Where;
N(t) = The mass left after t years
N₀ = The initial mass of the hydrogen-3 = 100 g
t = Time duration of the decay = 24.6 years
= Half-life = 12.32 years

The mass left after 24.6 years = 25.0563 grams.
The proportion of carbon and oxygen is different in samples of the gas