Answer: Metals bond with metals.
Explanation: A metallic bond is a sharing of electrons between many atoms of a metal element. Metallic bonding is when positive ions (metals) are in a 'sea of negative electrons'. The electrons are delocalised, which means they can move around easily and carry charge, and this enables it to conduct electricity, even in a solid state. The big pool of electrons is like a free-for-all in that any valence electron can move to any atom within the material.
Answer:
We need 226 grams of FeS
Explanation:
Step 1: Data given
Mass of FeCl2 = 326 grams
Molar mass FeCl2 = 126.75 g/mol
Step 2: The balanced equation
FeS + 2 HCl → H2S + FeCl2
Step 3: Calculate moles FeCl2
Moles FeCl2 = 326 grams / 126.75 grams
Moles FeCl2 = 2.57 moles
Step 4: Calculate moles FeS needed
For 1 mol H2S and 1 mol FeCl2 produced, we need 1 mol FeS and 2 moles HCl
For 2.57 moles FeCl2 we need 2.57 moles FeS
Step 5: Calculate mass FeS
Mass FeS = 2.57 moles * 87.92 g/mol
Mass FeS = 226 grams FeS
We need 226 grams of FeS
Answer:
See Explanation
Explanation:
Given that;
N/No = (1/2)^t/t1/2
Where;
No = amount of radioactive isotope originally present
N = A mount of radioactive isotope present at time t
t = time taken
t1/2 = half life
N/1000=(1/2)^3/6
N/1000=(1/2)^0.5
N = (1/2)^0.5 * 1000
N= 707 unstable nuclei
Since the value of the initial activity of the radioactive material was not given, the activity of the radioactive material after three months is given by;
Decay constant = 0.693/t1/2 = 0.693/6 months = 0.1155 month^-1
Hence;
A=Aoe^-kt
Where;
A = Activity after a time t
Ao = initial activity
k = decay constant
t = time taken
A = Aoe^-3 *0.1155
A=Aoe^-0.3465
Since the Summer solstice is when the sun is highest in the sky and the solstice is in June, that's your answer :)