The energy carried by a single photon of frequency f is given by:
where
is the Planck constant. In our problem, the frequency of the photon is
, and by using these numbers we can find the energy of the photon:
Answer:
This means that the kinetic energy of second object is 48times that of the first object
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion e.g motion of an accelerating car. Mathematically,
Kinetic energy = 1/2mv² where;
m is the mass of the object
v is the velocity of the object
If Object 1 of mass m moves with speed v in the positive direction, its kinetic energy will be expressed as;
K1 = 1/2mv²
For Object 2 of mass 3m moving with speed 4v in the negative x-direction, its kinetic energy can be expressed as;
K2 = 1/2(3m)(4v)²
K2 = 1/2(3m)(16v²)
K2 = (3m)(8v²)
K2 = 24mv²
To compare the kinetic energy of both bodies, we will take the ratio of K2:K1 to have;
K2/K1 = 24mv²/(1/2)mv²
K2/K1 = 24/(1/2)
K2/K1 = 48
K2 = 48K1
This means that the kinetic energy of second object is 48times that of the first object and moving in the negative x direction since the body of mass 3m initially moves in the negative x direction.
Answer:
the oscillations of the electrons must be in the 10⁸ Hz = 100 MHz range
Explanation:
The speed of a wave of radio, television, light, heat, all are manifestations of electromagnetic waves that are oscillations of electric and magnetic fields that support each other, the speed of all these waves is the same and the vacuum is equal to c = 3 108 m / s
All waves have a relationship between the speed of the wave, its frequency and wavelength
c = λ f
f = c /λ
for this case lam = 1 m
f = 3 10⁸/1
f = 3 10⁸ Hz
the oscillations of the electrons must be in the MHz range
It should be clarified that the speed of light in air is a little lower
n = c / v
v = c / n
the refractive index of vacuum is n = 1 and the refractive index of air is n = 1.000002
Answer:
How high the sound or how low the sound is depending on the pitch of the sound which in this case the frequencies of the sound. The higher of the frequencies , the higher of the pitch but it has the shortest length of wave (λ). That's why AM radio have a longer range but bad audio quality than FM radio that have better audio quality with shorter range.
To answer this question, first we take note that the maximum height that can be reached by an object thrown straight up at a certain speed is calculated through the equation,
Hmax = v²sin²θ/2g
where v is the velocity, θ is the angle (in this case, 90°) and g is the gravitational constant. Since all are known except for v, we can then solve for v whichi s the initial velocity of the projectile.
Once we have the value of v, we multiply this by the total time traveled by the projectile to solve for the value of the range (that is the total horizontal distance).