Answer:
37.545 m/s
Explanation:
f' = Actual frequency of horn = 269 Hz
f = Observed frequency of horn = 290 Hz
v = Speed of sound in air = 343 m/s
= Speed of second train = 13.7 m/s
= Speed of first train
From Doppler effect we have

The speed of the first train is 37.545 m/s
Answer:
786.6 N
Explanation:
mass of car, m = 912 kg
initial velocity of car, u = 31.5 m/s
final velocity of car, v = 24.6 m/ s
time, t = 8 s
Let a be the acceleration of the car
Use first equation of motion
v = u + a t
24.6 = 31.5 + a x 8
a = - 0.8625 m/s^2
Force, F = mass x acceleration
F = 912 x 0.8625
F = 786.6 N
Thus, the force on the car is 786.6 N.
Answer:
the answer to this question is 2,4,3,1
I'm trying to make an electromagnet that's strength is constantly getting incremented by small amounts every second. I need to know, which would have a greater effect on the electromagnet's strength, amps or volts? (I know increasing the turns and/or density of the magnet wire will increase the strength, but I am looking for answers other than that particular one.)
A decrease in mass will decrease an objects weight because
weight = mass x gravitational constant