Answer:
A) F_g = 4.05 10⁻⁴⁷ N, B) F_e = 9.2 10⁻⁸N, C)
= 2.3 10³⁹
Explanation:
A) It is asked to find the force of attraction due to the masses of the particles
Let's use the law of universal attraction
F = 
let's calculate
F = 
F_g = 4.05 10⁻⁴⁷ N
B) in this part it is asked to calculate the electric force
Let's use Coulomb's law
F = 
let's calculate
F = 
F_e = 9.2 10⁻⁸N
C) It is asked to find the relationship between these forces

= 2.3 10³⁹
therefore the electric force is much greater than the gravitational force
Both magnitude and DIRECTION
For example,
• 12m East
• -2 miles
•9 meter north
• 8 miles up
1950 g This is the answer due to the kilograms of lead being distributed
According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:
H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.
So the law of conservation of heat tells that:
Sensible heat of Z + Sensible heat of container = Sensible heat of X
Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.