Answer:

Explanation:
First, the instant associated to the angular displacement is:

Roots of the second-order polynomial are:

Only the first root is physically reasonable.
The angular velocity is obtained by deriving the angular displacement function:


The angular acceleration is obtained by deriving the previous function:

The resultant linear acceleration on the rim of the disk is:






C.
Nitrogen has the atomic no. of 7 so the proton and the electron no. is 7.
Three more electrons are needed to fulfil the octet structure: 2,8
I would say B surface tension
Answer:
I am going to guess it shows that the balloon is going downwards because the speed of rise is in the negatives for the last 2.
Given:
The initial velocity of the object, v=30 m/s
a_t=0
a_c≠0
The time period is Δt.
To find:
The right conclusion among the given choices.
Explanation:
a_t represents the tangential accleration on the object and a_c represents the centripetal acceleration on the object.
The centripetal acceleration is the acceleration that keeps the object in its circular path. The centripetal force only changes the direction of the velocity and not the magnitude.
Thus the magnitude of the velocity of the object remains the same after a time interval of Δt. But the direction of the velocity of the object will be changed and will be unknown after Δt seconds.
Final answer:
Thus the object will be traveling at 30 m/s in some unknown direction.
Therefore, the correct answer is option a.