The white phosphorus, is very reactive with the atmosphere enters the point of ignition ,causing <span>explosion.
</span>
Answer:
The answer is D. 0.60 L
Explanation:
The balanced reaction equation including states of matter is;
H₂SO₄(aq) + 2NaOH(aq) → Na₂SO₄(aq) + 2H₂O(l)
More simple:
H2SO4 + 2NaOH → Na2SO4 + 2H2O
Now, we can see from this reaction equation that the mole ratio of NaOH to H2SO4 is 2:1
Number of moles of H2SO4 reacted = 1.2 moles
Hence;
2 moles of NaOH reacts with 1 mole of H2SO4
x moles of NaOH reacts with 1.2 moles of H2SO4
x = 2 * 1.2/1 = 2.4 moles of NaOH
Recall that;
Number of moles = Concentration * Volume
Volume = number of moles/concentration
Volume of NaOH is obtained from;
Volume = 2.4 moles/ 4.0 M
Volume = 0.60 L
<u>Answer:</u> The increase in pressure is 0.003 atm
<u>Explanation:</u>
To calculate the final pressure, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= final pressure = ?
= Enthalpy change of the reaction = 28.8 kJ/mol = 28800 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![801^oC=[801+273]K=1074K](https://tex.z-dn.net/?f=801%5EoC%3D%5B801%2B273%5DK%3D1074K)
= final temperature = ![(801+1.00)^oC=802.00=[802+273]K=1075K](https://tex.z-dn.net/?f=%28801%2B1.00%29%5EoC%3D802.00%3D%5B802%2B273%5DK%3D1075K)
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28800J/mol}{8.314J/mol.K}[\frac{1}{1074}-\frac{1}{1075}]\\\\\ln P_2=3\times 10^{-3}atm\\\\P_2=e^{3\times 10^{-3}}=1.003atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28800J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B1074%7D-%5Cfrac%7B1%7D%7B1075%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D3%5Ctimes%2010%5E%7B-3%7Datm%5C%5C%5C%5CP_2%3De%5E%7B3%5Ctimes%2010%5E%7B-3%7D%7D%3D1.003atm)
Change in pressure = 
Hence, the increase in pressure is 0.003 atm
Answer: D. An increase in entropy
Explanation:
Entropy is the measure of randomness or disorder of a system. If a system moves from an disordered arrangement to an ordered arrangement, the entropy is said to increase and vice versa.
For a reaction to be spontaneous, the enthalpy of the solution must decrease and the entropy must increase.
To overcome a positive enthalpy of solution and allow a solid solute to dissolve in water, an increase in entropy would make the reaction spontaneous as the system would move to a more disordered state.
Answer:
An ionic bond is the bonding between a non-metal and a metal, that occurs when charged atoms (ions) attract.
Explanation:
Here I put the function of Iconic Bond.
- <em>Ionic bonds form so that the outermost energy level of atoms are filled. Ion. an atom or group of atoms that bring out a positive or negative electric charge as a result of having lost or gained one or more electrons.</em>
<em>Therefore, I hope this helps!</em>