The lack of an atmosphere means convection cannot happen on the moon. Therefore, there is no form of heat dissipation on regions in direct sunlight. In addition, the lack of an atmosphere means there is no greenhouse effect on the moon. This is why regions facing away from sunlight are very cold.
Answer:
a) correct answer is C
, b) 14º from the west to the north, c) v_{1g} = 300.79 km / h
Explanation:
This is a relative speed exercise using the addition of speeds.
1) when it is not specified regarding what is being measured, the medicine is carried out with respect to the Z Earth, therefore the correct answer is C
2 and 3) In this case we must compose the speed using the Pythagorean Theorem.
² =
² +
²
where v_{1a} is the speed of the airplane with respect to the air, v_{1g} airplane speed with respect to the Earth, v_{ag} air speed with respect to the Earth
in this case let's clear the speed of the airplane with respect to the Earth
v_{1g} = √(v_{1a}² - v_{ag}²)
v_{1g} = √ (310² - 75²)
v_{1g} = 300.79 km / h
we find the direction of the airplane using trigonometry
sin θ = v_{ag} / v_{1a}
θ = sin⁻¹ (v_{ag} /v_{1a})
θ = sin⁻¹ (75/310)
θ= 14º
the pilot must direct the aircraft at an angle of 14º from the west to the north
Here in crash test the two forces are acting on the dummy in two different directions
As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.
So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors
so we can say
![F_{net} = \sqrt{F_1^2 + F_2^2}](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%5Csqrt%7BF_1%5E2%20%2B%20F_2%5E2%7D)
here given that
![F_1 = 130.0 N](https://tex.z-dn.net/?f=F_1%20%3D%20130.0%20N)
![F_2 = 4500.0 N](https://tex.z-dn.net/?f=F_2%20%3D%204500.0%20N)
now we will plug in all data in the above equation
![F_{net} = \sqrt{4500^2 + 130^}](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%5Csqrt%7B4500%5E2%20%2B%20130%5E%7D)
![F_{net} = 4501.9 N](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%204501.9%20N)
so it will have net force 4501.9 N which will be reported by sensor
<span>In this problem, we need to solve for Bubba’s mass. To do this, we let A be the area of the raft and set the weight of the displaced fluid with the raft alone as ρwAd1g and ρwAd2g with the person on the raft, </span>where ρw is the density of water, d1 = 7cm, and d2= 8.4 cm. Set the weight of displaced fluid equal to the weight of the floating objects to eliminate A and ρw then solve for m.
<span>ρwAd1g = Mg</span>
ρw<span>Ad2g = (M + m) g</span>
<span>d2∕d1 = (M + m)/g</span>
m = [(d2<span>∕d1)-1] M = [(8.4 cm/7.0 cm) - 1] (600 kg) =120 kg</span>
This means that Bubba’s mass is 120 kg.
Answer:
The metal will melt but their will be no change in temperature.
Explanation:
The metal is at its melting temperature which means it is still in solid phase but have to cross the enthalpy of its condensation at this same temperature to convert into liquid phase.
<u>On supplying heat, the metal's temperature will not change as the heat will be required as enthalpy of condensation to melt the solid to liquid at the melting temperature.</u>