Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Answer:
y=8
Explanation:
every time you multiply x by 3 you divide y by 3.
x=2, multiply it by 3: x=6
y=24, divide it by 3: y=8
Answer:
Normal force, 
Explanation:
Let
is the weight of suitcase. A man attempts to pick up his suitcase by pulling straight up on the handle. The weight of the suitcase in downward direction. The normal force is acting in upward direction. Let F is the force with which it is pulled straight up.
So, the normal force is given by :

N = mg - F
mg is the weight of the suitcase.
Hence, this is the required solution.
Answer:
The time taken for the ball to get to the batter is 0.41 s.
Explanation:
Given;
initial velocity of the baseball, u = 45 m/s
horizontal distance between the pitcher and the batter, X = 18.39 m
The horizontal distance or range of a projectile is given as;
X = ut
where;
t is the time of flight
u is the initial velocity
t = X / u
t = 18.39 / 45
t = 0.41 s
Therefore, the time taken for the ball to get to the batter is 0.41 s.
Potential energy is highest when the car is released at the top of the ramp. The correct answer is option C
Potential energy is the energy possessed by a body when the body is at rest. Potential energy is at time called gravitational potential energy which as a product of mass of the body, acceleration due to gravity and the height attained by the body. That is,
P.E = mgh
When a car is moving down a ramp, the potential energy of the car can never remain the same except the car stop at a certain point.
Whenever a car is moving down a ramp, the potential energy of the car will be highest when the car is release at the top of the ramp. And lowest when the car reaches the bottom of the ramp.
The statement that is correct about the potential energy of a car moving down a ramp is:
Potential energy is highest when the car is released at the top of the ramp.
Therefore, the correct answer is option C
Learn more here: brainly.com/question/17400615