Answer:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Explanation:
In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.
The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.
For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:
The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.
Answer:
temperature
The two most important factors in the climate of an area are temperature and precipitation. The yearly average temperature of the area is obviously important, but the yearly range in temperature is also important.
Explanation:
It takes work to push charge through a change of potential.
There's no change of potential along an equipotential path,
so that path doesn't require any work.
<span>Assuming continuous operation (24/7), we can say that
Energy produced : Energy per hour * 24 (number of hours in a day) - 365 (number of days in a year.
Energy per hour: 2050 * 1.055 = 2162.75 kg.
So, we proceed to calculate the results
E: 2162.75 * 24 * 365 = 18,945,690 kj per year.
Now, we transform kj to megajoule, remembering that kilo is 10*3 and mega is 1'*6, so we divide the result by 1,000 in order to get the results in megajoules, and the answer would be:
18,945.69 megajoules can be produced per year.</span>
The object is at rest is the answer.