Answer:
<h2>C. <em>
20,160</em></h2>
Step-by-step explanation:
This question bothers on permutation since we are to select a some people out of a group of people and then arrange in a straight line. If r object are to be arranged in a straight line when selecting them from n pool of objects. This can be done in nPr number of ways.
nPr = n!/(n-r)!
Selection of 6 people out of 8 people can therefore be done in 8C6 number of ways.
8P6 = 8!/(8-6)!
8P6 = 8!/2!
8P6 = 8*7*6*5*4*3*2!/2!
8P6 = 8*7*6*5*4*3
8P6 = 56*360
8P6 = 20,160
<em>Hence this can be done in 20,160 number of ways</em>
Answer:
x>22
Step-by-step explanation:
Solve the inequality:
-3x<-14-52
-3x<-66
x>22
( You have to switch the sign because you are dividing by a minus)
Answer:
Step-by-step explanation:
1
Let

In order to prove this by induction, we first need to prove the base case, i.e. prove that P(1) is true:

So, the base case is ok. Now, we need to assume
and prove
.
states that

Since we're assuming
, we can substitute the sum of the first n terms with their expression:

Which terminates the proof, since we showed that

as required
The number of intersections is the number of solutions
we can see they are paralell so they will never intersect
0
C is the answer