Rain fall which is called run off
<h2>Answers:</h2><h2 /><h2>a) Arrow B</h2><h2>b) Arrow E</h2>
Explanation:
Refraction is a phenomenon in which a wave (the light in this case) bends or changes its direction <u>when passing through a medium with a refractive index different from the other medium.</u> Where the Refractive index is a number that describes how fast light propagates through a medium or material.
According to this, if we observe the rays A an D passing throgh the biconcave lens, we will have two mediums:
1) The air
2)The material of the biconcave lens
This two mediums have different refractive indexes, hence the rays will change the direction.
-For the incident ray A, the corresponding refractive ray is B, because is the ray that bends after passing throgh the lens
-For the incident ray D, the refracted ray is E following the same principle.
Via half-life equation we have:
Where the initial amount is 50 grams, half-life is 4 minutes, and time elapsed is 12 minutes. By plugging those values in we get:
There is 6.25 grams left of Ra-229 after 12 minutes.
Answer:
a = 3.61[m/s^2]
Explanation:
To find this acceleration we must remember newton's second law which tells us that the total sum of forces is equal to the product of mass by acceleration.
In this case we have:
Answer:
38 cm from q1(right)
Explanation:
Given, q1 = 3q2 , r = 60cm = 0.6 m
Let that point be situated at a distance of 'x' m from q1.
Electric field must be same from both sides to be in equilibrium(where EF is 0).
=> k q1/x² = k q2/(0.6 - x)²
=> q1(0.6 - x)² = q2(x)²
=> 3q2(0.6 - x)² = q2(x)²
=> 3(0.6 - x)² = x²
=> √3(0.6 - x) = ± x
=> 0.6√3 = x(1 + √3)
=> 1.03/2.73 = x
≈ 0.38 m = 38 cm = x