1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka-Z-Leto [24]
3 years ago
9

Pls can anyone solve this​

Physics
1 answer:
gayaneshka [121]3 years ago
8 0

Answer:

3 pls give me brainliest

Explanation:

You might be interested in
100 J of work in 10 seconds
HACTEHA [7]
The average power is 10 watts. What's the question ?
7 0
3 years ago
(a) Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The ma
andrew11 [14]

Answer:

a) F=1.044\times 10^9\ N

b)F'=1.044\times 10^9\ N

c) F_p=1.0672\times10^{-7}\ N

d) Treat the humans as though they were points or uniform-density spheres.

Explanation:

Given:

  • mass of Mars, M=6.4\times 10^{23}\ kg
  • radius of the Mars, r=3.4\times 10^{6}\ m
  • mass of human, m=80\ kg

a)

Gravitation force exerted by the Mars on the human body:

F=G.\frac{M.m}{r^2}

where:

G=6.67 \times 10^{-11}\ m^3.kg^{-1}.s^{-2} = gravitational constant

F=6.67\times10^{-11}\times \frac{6.4\times 10^{23}\times 80}{(3.4\times 10^{6})^2}

F=1.044\times 10^9\ N

b)

The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.

F'=F

F'=1.044\times 10^9\ N

c)

When a similar person of the same mass is standing at a distance of 4 meters:

F_p=6.67\times10^{-11}\times \frac{80\times 80}{4}

F_p=1.0672\times10^{-7}\ N

d)

The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.

  • Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
  • Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
4 0
3 years ago
A coworker did not clean his work area before going home this could cause an accident so you quickly clean up the next day you s
defon

Answer:

THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM

Explanation:

5 0
2 years ago
Read 2 more answers
A 65-kg skier grips a moving rope that is powered by an engine and is pulled at a constant speed to the top of a 230 hill. The s
Sveta_85 [38]

Answer:

The required power by the engine is 33.0 hp

Explanation:

Solution

Newton's second law says that, the net force Fnet on an object of mass m will accelerates the object

Where

Fnet = ma

a = acceleration

θ = angle of incline,

m = mass of the 30 skiers,

f = frictional force

N = normal force

mg sinθ, mg cos θ are components of weight skier

F = the force applied by engine

Now,

The skier mass  is 65 kg

We calculate the mass of the 30 skier

m = 30 (65kg) = 1950 kg

Calculate the net force acting on the skiers along the x-axis

Fnet, x=ma

Now,

F-mg sin θ - f = 0

F= mg sin θ + f -----(1)

The kinetic frictional force is denoted by

f = μk N ------(2)

μk = The coefficient of the kinetic friction

We now, calculate the net force acting on the skiers along y axis

Fnet, y = ma

N- mg cos θ = 0

so,

N = mg cos θ

This value is  substituted in equation (2)

f = μk mg cos θ

we substitute the value for equation (1)

F = mg sin θ + μk mg cos θ

mg =  sinθ + μk cos θ)-----(3)

The next step is to calculate the work done by the engine in pulling the skiers, the incline top by applying the equation 3

W = Fx

= mg ( sinθ + μk cos θ)x

x = the displacement

we now substitute 1950 kg for m, 23° for θ, 0.10 for μk and 320m for x

so,

W = mg ( sinθ + μk cos θ)x

= (1950 kg) (9.81 m/s²) (sin 23° + (0.10) cos 23°) (320 m)

= 2.99 * 10 ^6 J

Then,

The time from minute to s is converted

t =(2.0min) ( 60sec/1.0min) = 120 sec

Now we calculate the power needed by the engine to pull the skiers at the incline top

Thus,

P = W/t

we substitute  2.955 * 10 ^6 J for W and  120 s for t

we have,

P = 2.955 * 10 ^ 6 J/ 120 s

= ( 2.4625 * 10 ^ 4 W) (1.0 hp/746 W)

= 33.0 hp

In conclusion the required power by the engine is 33.0 hp

3 0
3 years ago
(a) A light-rail commuter train accelerates at a rate of 1.35 m/s2 . How long does it take to reach its top speed of 80.0 km/h,
Mashcka [7]

Answer:

(a) Time t = 16.46 sec

(b) Time t =13.466 sec

(c) Deceleration = 2.677m/sec^2

Explanation:

(a) As the train starts from rest its initial velocity u = 0 m/sec

Acceleration a=1.35m/sec^2

Final speed v = 80 km/hr

80km/hr=\frac{80\times 1000}{3600sec}=22.22m/sec

From first equation of motion v =u+at

So t=\frac{v-u}{a}=\frac{22.22-0}{1.35}=16.46 sec

(b) Now initial speed u = 22.22 m/sec

As finally train comes to rest so final speed v=0 m/sec

Deceleration a=1.65m/sec^2

So t=\frac{v-u}{a}=\frac{0-22.22}{-1.65}=13.466 sec

(c) We have given that initial velocity = 80 km/hr = 22.22 m/sec

Final velocity v = 0 m/sec

Time t = 8.30 sec

So acceleration is given by

a=\frac{v-u}{t}=\frac{0-22.22}{8.3}=-2.6771m/sec^2

As acceleration is negative so it is a deceleration

7 0
3 years ago
Other questions:
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • What word can I use instead of saying "each time"
    7·1 answer
  • The activation temperature of most ice-forming nuclei is ______ 0 oc.
    11·1 answer
  • You are driving at the speed of 27.7 m/s (61.9764 mph) when suddenly the car in front of you (previously traveling at the same s
    8·2 answers
  • Whích best explains parallel forces?
    9·1 answer
  • An astronaut is being tested in a centrifuge. The centrifuge has a radius R and, in starting, rotates according to θ = tn, where
    7·1 answer
  • Getyour pointsssssssssssssssssssssss
    9·2 answers
  • The force in a string which is holding up an apple which type of force is it?​
    13·1 answer
  • A hovercraft is being driven across a lake on a very windy day. The wind exerts a force of 5000 N north on the hovercraft. The p
    9·1 answer
  • The law of Conservation of energy states that energy can be transformed from one form to another, but it cannot be _______ or __
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!