What you must do for this case is to follow the following steps.
1) Rewrite the expression completely.
2) make a double c.
3) Factor each quadratic expression correctly.
4) cancel similar terms.
Answer: 2n See attached images.
Please: Use "^" to denote exponentiation: <span>2x^2 + 8x - 12 = 0
Reduce this by div. every term by 2: </span><span>x^2 + 4x - 6 = 0
Here a=1, b=4 and c = -6. Square half of b, obtaining (4/2)^2 = 4, and add, and then subtract, this 4 to x^2 + 4x - 6:
</span> x^2 + 4x +4 - 4 - 6 = 0. Rewrite the square as (x+2)^2, obtaining new equation
(x+2)^2 = 10. Take the sqrt of both sides: x+2 = plus or minus sqrt(10).
Finally, solve for x: x = -2 plus or minus sqrt(10).
![\dfrac\partial{\partial y}\left[e^{2y}-y\cos xy\right]=2e^{2y}-\cos xy+xy\sin xy](https://tex.z-dn.net/?f=%5Cdfrac%5Cpartial%7B%5Cpartial%20y%7D%5Cleft%5Be%5E%7B2y%7D-y%5Ccos%20xy%5Cright%5D%3D2e%5E%7B2y%7D-%5Ccos%20xy%2Bxy%5Csin%20xy)
![\dfrac\partial{\partial x}\left[2xe^{2y}-y\cos xy+2y\right]=2e^{2y}+y\sin xy](https://tex.z-dn.net/?f=%5Cdfrac%5Cpartial%7B%5Cpartial%20x%7D%5Cleft%5B2xe%5E%7B2y%7D-y%5Ccos%20xy%2B2y%5Cright%5D%3D2e%5E%7B2y%7D%2By%5Csin%20xy)
The partial derivatives are not equal, so the equation is not exact.
I believe your answer is (1,5)
I graphed the equations and the ordered pairs and (1,5) is the only point that fell on both of the shaded areas.
hope this helps !!