Answer:
Vf= 7.29 m/s
Explanation:
Two force act on the object:
1) Gravity
2) Air resistance
Upward motion:
Initial velocity = Vi= 10 m/s
Final velocity = Vf= 0 m/s
Gravity acting downward = g = -9.8 m/s²
Air resistance acting downward = a₁ = - 3 m/s²
Net acceleration = a = -(g + a₁ ) = - ( 9.8 + 3 ) = - 12.8 m/s²
( Acceleration is consider negative if it is in opposite direction of velocity )
Now
2as = Vf² - Vi²
⇒ 2 * (-12.8) *s = 0 - 10²
⇒-25.6 *s = -100
⇒ s = 100/ 25.6
⇒ s = 3.9 m
Downward motion:
Vi= 0 m/s
s = 3.9 m
Gravity acting downward = g = 9.8 m/s²
Air resistance acting upward = a₁ = - 3 m/s²
Net acceleration = a = g - a₁ = 9.8 - 3 = 6.8 m/s²
Now
2as = Vf² - Vi²
⇒ 2 * 6.8 * 3.9 = Vf² - 0
⇒ Vf² = 53. 125
⇒ Vf= 7.29 m/s
Answer:
1471.5 Newton
10
Explanation:
Small piston area = A₁ = 2 m²
Large piston area A₂ = 20 m
m = Mass of car = 1500 kg
g = Acceleration due to gravity = 9.81 m/s²
Force
F = mg = 1500×9.81 = 14715 N
Force applied by car is 14715 N
a) Pascal's law

Force required is 1471.5 Newton
b) Mechanical advantage

Mechanical advantage is 10
Answer:
Reliability is typically shown as a reliability coefficient created in a calculation to determine the reliability, or consistency, of scores, such as a measure of the amount of consistency between two sets of scores from different administrations from the same group of students.
In order for the refrigerator not to tip over, the maximum acceleration of 1.86 m/s² must not be exceeded.
<h3>What is acceleration?</h3>
The term acceleration has to do with the rate at which velocity changes with time.
We have to take the moments at the tipping point of rotation as follows;
Clockwise moment = Anticlockwise moment
Hence;
F₂ * 1.58 m = F₁ * 0.67 m
The weight at half the width= 30 cm or 0.3 m
Height of refrigerator = 158 cm 0r 1.58 cm
Then;
m * a * 1.58 = m * 9.81 * 0.30
a = 1.86 m/s²
In order for the refrigerator not to tip over, the maximum acceleration of 1.86 m/s² must not be exceeded.
Learn more about acceleration: brainly.com/question/14344386
#SPJ1
The answer is a, series circuit.