<span>
The centripetal force that allows a car to move around a sharp curve in
a roadway is the frictional force between the tires of its wheels and
the surface of the road. </span>
Answer:
Option C. Objects 1 and 3 will not move, and objects 2 and 4 will accelerate
upward.
Explanation:
The following data were obtained from the question:
OBJECT >>>>>>>>> WEIGHT (N)
1 >>>>>>>>>>>>>>>> 35
2 >>>>>>>>>>>>>>>> 23
3 >>>>>>>>>>>>>>>> 26
4 >>>>>>>>>>>>>>>> 18
Force (F) applied = 25 N
From the above, the force applied to each object is 25N. Thus the following can be concluded based on the data given above:
For object 1:
Weight = 35 N
Force applied = 25 N
Thus, the object will not move since the weight of the object is greater than the force applied
For object 2:
Weight = 23 N
Force applied = 25 N
Thus, the object will move since the force applied is greater than the weight of the object.
For object 3:
Weight = 26 N
Force applied = 25 N
Thus, the object will not move since the weight of the object is greater than the force applied.
For object 4:
Weight = 18 N
Force applied = 25 N
Thus, the object will move since the force applied is greater than the weight of the object.
From the above illustrations, Object 1 and 3 will not move, and objects 2 and 4 will accelerate i.e move
R=ut+gt^2/2
r- displacement (height to find)
u - initial speed (zero)
t - time taken
r=0*5.8 + 10*5.8^2 /2 = 168.2 meters
1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
Answer: Depends
Explanation:
Depends on how much the diver weighs.