Explanation:
According to the given data, we will calculate the following.
Half life of lipase
= 8 min x 60 s/min
= 480 s
Rate constant for first order reaction is as follows.
=
Initial fat concentration
= 45
= 45 mmol/L
Rate of hydrolysis
= 0.07 mmol/L/s
Conversion X = 0.80
Final concentration (S) =
= 45 (1 - 0.80)
= 9
or, = 9 mmol/L
It is given that
= 5mmol/L
Therefore, time taken will be calculated as follows.
t = ![-\frac{1}{K_{d}}ln[1 - \frac{K_{d}}{V}{K_{M} ln (\frac{S_{o}}{S}) + (S_{o} - S)]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7BK_%7Bd%7D%7Dln%5B1%20-%20%5Cfrac%7BK_%7Bd%7D%7D%7BV%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7BS_%7Bo%7D%7D%7BS%7D%29%20%2B%20%28S_%7Bo%7D%20-%20S%29%5D)
Now, putting the given values into the above formula as follows.
t =
= ![-\frac{1}{1.44 \times 10^{-3}s^{-1}}ln[1 - \frac{1.44 \times 10^{-3}s^{-1}}{0.07 mmol/L/s }{K_{M} ln (\frac{45 mmol/L }{9 mmol/L }) + (45 mmol/L - 9 mmol/L )]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7Dln%5B1%20-%20%5Cfrac%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7D%7B0.07%20mmol%2FL%2Fs%0A%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7B45%20mmol%2FL%0A%7D%7B9%20mmol%2FL%0A%7D%29%20%2B%20%2845%20mmol%2FL%20-%209%20mmol%2FL%0A%29%5D)
= 
= 27.38 min
Therefore, we can conclude that time taken by the enzyme to hydrolyse 80% of the fat present is 27.38 min.
Answer:
11.4
Explanation:
Step 1: Given data
- Concentration of the base (Cb): 0.300 M
- Basic dissociation constant (Kb): 1.8 × 10⁻⁵
Step 2: Write the dissociation equation
NH₃(aq) + H₂O(l) ⇄ NH₄⁺(aq) + OH⁻(aq)
Step 3: Calculate the concentration of OH⁻
We will use the following expression.
![[OH^{-} ]=\sqrt{Kb \times Cb } = \sqrt{1.8 \times 10^{-5} \times 0.300 } = 2.3 \times 10^{-3} M](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%20%5D%3D%5Csqrt%7BKb%20%5Ctimes%20Cb%20%7D%20%3D%20%5Csqrt%7B1.8%20%20%5Ctimes%2010%5E%7B-5%7D%20%5Ctimes%200.300%20%7D%20%3D%202.3%20%5Ctimes%2010%5E%7B-3%7D%20M)
Step 4: Calculate the pOH
We will use the following expression.
![pOH =-log[OH^{-} ]= -log(2.3 \times 10^{-3} M) = 2.6](https://tex.z-dn.net/?f=pOH%20%3D-log%5BOH%5E%7B-%7D%20%5D%3D%20-log%282.3%20%5Ctimes%2010%5E%7B-3%7D%20M%29%20%3D%202.6)
Step 5: Calculate the pH
We will use the following expression.

Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
The unit of momentum is the product of the units of mass and velocity.
An aqueous solution of hydrozen chloride: Strongly corrosive acids
A colouriess punpent liquid widely used in manufacturing plastic and pharmaceutical