Answer:
This cannot be determined without knowing the actual mass of the objects.
Explanation:
its like trying to compare the letter A and letter B
Answer/Explanation:
In June 1998 in Japan a scientist discovered that neutrinos (which is a type of particle) has weight, mass. This was later proven with some very convincing strong evidence.
<u><em>~ LadyBrain</em></u>
Answer:
No.
Explanation:
No, one mole of peas do not fit inside a house because one mole is equals to 6.022 × 10²³ units which is a very large value. mole only use for atoms, ions and molecules etc due to very small size but mole is not used for big sized materials such as peas and other vegetables etc. So that's why we can conclude that one mole of peas did not fit inside a house.
Answer:
This question is incomplete
Explanation:
There are two major forms of energy; these are potential and kinetic energy. Kinetic energy is the energy present in moving options. Examples include mechanical and electrical energy.
The formula for kinetic energy is 1/2mv² where "m" is mass and "v" is velocity.
While potential energy is the energy present in stationary objects that can be put to use in future. Example includes a ball in its resting state. The formula for potential energy is "mgh" where "m" is mass, "g" is acceleration due to gravity and "h" is height
Considering the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. Looking at the example provided earlier for potential energy, a ball in its resting position (having a potential energy) when kicked will have a kinetic energy (which can be calculated with the formula provided earlier), hence
Total energy = potential energy (P.E) + kinetic energy (K.E)
This formula and the explanation above can be used to answer the completed question.
NOTE: There is no standard relationship between P.E and K.E. They could be directly or indirectly proportional depending on the circumstance.
Answer:
physical properties of gases, that is, pressure, volume, temperature, and amount of gas