The activation energy is the minimum amount of energy that particles must have in order for them to participate in a chemical reaction. During chemical reactions bonds are broken and formed. Particles must collide with sufficient energy in order for the initial bonds to be broken. The activation energy is that that initial minimum energy that the particles can have in order for the bonds to be broken. Stronger bonds would require more energy to be broken and therefore the activation energy for such would be higher.
Answer: when the temperature is increased, the number of collisions per second increases.
Explanation:
the rate of collisions and the temperature is directly proportional. If the energy of the gas particles is boosted by using the temperature, the chances of the particles bumping into each other due to the high energy increases, thus increasing the number of collisions. This also increases the rate of reaction. Thus when temperature is increased the number of collisions also increases.
Some are weaker than others it’s natural causes or they fight then d1e
The mixture contains:
CaCO3 + (NH4)2CO3 in which the amount of carbonate CO3 = 60.7% by mass
Let, the total mass = 100 grams
Mass of CaCO3 = x grams
Mass of (NH4)2CO3 = y grams
Thus, x + y = 100 ------------(1)
Mass of CO3 = 60.7% = 60.7 g
Molar mass of CO3 = 60 g/mol
Total # moles of CO3 = 60.7 g/60 g.mol-1 = 1.012 moles
The total moles of CO3 comes from CaCO3 and (NH4)2CO3. Therefore,
moles CaCO3 + moles (NH4)2CO3 = 1.012
mass CaCO3/molar mass CaCO3 + mass (NH4)2 CO3/molar mass = 1.012
x/100 + y/96 = 1.012---------(2)
based on equation 1 we can write: y = 100-x
x/100 + (100-x)/96 = 1.012
x = 71.2 g
Mass of CaCO3 = 71.2 g
The energy to form a peptide bond comes from our food. Our cells go through cellular respiration, which is a process that converts the complex foods molecules into ATP (the energy
storing molecule ). With that ATP stored is possible to use to form the peptide bond.