Answer:
solution:-We know that for any two finite sets A and B, n(A∪B)=n(A)+n(B)−n(A∩B).
Here, it is given that n(A)=20,n(B)=30 and n(A∪B)=40, therefore,
n(A∪B)=n(A)+n(B)−n(A∩B)
⇒40=20+30−n(A∩B)
⇒40=50−n(A∩B)
⇒n(A∩B)=50−40
⇒n(A∩B)=10
Hence, n(A∩B)=10
Step-by-step explanation:
hope it helps you friend ☺️
Answer:
Option C, 
Step-by-step explanation:





Answer: Option C, 
Step-by-step explanation:
hope it helps you........
Answer: 5y + 4x = - 10
Step-by-step explanation:
Two lines are said to be perpendicular if the product of their gradients = -1.
If the gradient of the first line is
and the gradient of the second line is
, if the lines are perpendicular, them
x
= -1 , that is
= 
The equation of the line given is 5x - 4y = -3 , we need to write this equation in slope - intercept form in order to find the slope.
The equation in slope -intercept form is given as :
y =mx + c , where m is the slope and c is the y - intercept.
Writing the equation in this form , we have
5x - 4y = + 3
4y = 5x -+3
y = 5x/4 + 3/4
comparing with the equation y = mx + c , then
= 5/4
Which means that
= -4/5 and the line passes through the point ( -5 , 2 ).
Using the equation of line in slope - point form to find the equation of the line;
y -
= m ( x -
)
y - 2 = -4/5 ( x +5)
5(y - 2 ) = -4 ( x + 5 )
5y - 10 = -4x - 20
5y + 4x = - 10
Answer:
2x+6
Step-by-step explanation:
distribute the equation