Answer:
74.4 kilowatts or 99.8 horsepower
Explanation:
The explanation is in the attachment.
Answer: 
Explanation:
The diffraction angles
when we have a slit divided into
parts are obtained by the following equation:
(1)
Where:
is the width of the slit
is the wavelength of the light
is an integer different from zero.
Now, the second-order diffraction angle is given when
, hence equation (1) becomes:
(2)
Now we have to find the value of
:
(3)
Then:
(4)
(5)
Finally:
(6)
Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?
B.<span>What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"</span>
<span>Solution:
A) A charge q </span>under an electric field of intensity E will experience a force F equal to:

In our problem we have
and
, so we can find the magnitude of the electric field:

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.
B) The proton charge is equal to

Therefore, the magnitude of the force acting on the proton will be

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.
Answer:
True
Explanation:
In this particular case, the area of the graph represents the impulse.
In fact, impulse is defined as the change in momentum of an object:

Moreover, impulse is also defined as the product between the magnitude of the force acting on an object and the duration of the collision:

If we plot a graph of the force versus the time, if the force is constant then this graph will have a rectangular shape, and the area under the graph will simply be the product

which corresponds to the definition of impulse.
<span>Which group in the periodic table is known as salt formers?
The correct option is the last one: Halogen family.
</span><span>
You can find the halogen or "</span>salt formers" in the group 17 of the periodic table. These are:
- Fluorine.
-Chlorine.
- Bromine.
- Iodine.
- Astatine.
All of them are non-metallic elements and they have 7 electrons.