The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:

It hardens because you are pressing it against something.
Answer:
The nervous and endocrine systems exert the ultimate control over homeostasis because they coordinate the functions of the body's systems.
Explanation:
The characteristics of high energy wave length are:
- High Frequencies
- Short wave length
And in term of color, it will be located on the red spectrum.
Complete question:
(b) How much energy must be supplied to boil 2kg of water? providing that the specific latent heat of vaporization of water is 330 kJ/kg. The initial temperature of the water is 20 ⁰C
Answer:
The energy that must be supplied to boil the given mass of the water is 672,000 J
Explanation:
Given;
mass of water, m = 2 kg
heat of vaporization of water, L = 330 kJ/kg
initial temperature of water, t = 20 ⁰C
specific heat capacity of water, c = 4200 J/kg⁰C
Assuming no mass of the water is lost through vaporization, the energy needed to boil the given water is calculated as;
Q = mc(100 - 20)
Q = 2 x 4200 x (80)
Q = 672,000 J
Q = 672,000 J
Q = 672,000 J
Therefore, the energy that must be supplied to boil the given mass of the water is 672,000 J