I think you just answered your question. They encourage adolescents to eat calcium-rich foods because it aids in bone formation, like you said.
Answer:
Changing the allosteric site would definitely impact the sensitivity of the blocker, and we can not understand precisely how it is owing to our lack of awareness of the specific adjustments and the FX11 layout.
Explanation:
The move would most likely reduce affinity, and FX11 will no longer be as successful as inhibiting C. Growth of parvum. An inhibitor may reach an allosteric site since the site has some sizes and operational classes that precisely match the shape and operational categories of the inhibitor, which is how the association is obtained if the shape is modified and the inclination is affected.
Such chemicals can be used as human drugs because the mechanism we 're disrupting isn't that normal in human cells, we 're talking about lactic fermentation. C.parvum is a parasite that is present in the digestive tract, and these areas do not appear to experience aerobic glycolysis. The material that undergoes this process under other conditions is muscle tissue. It is possible that the absorbed drug can penetrate the bloodstream and touch other organs, and we would recommend that clinicians avoid exercise during this drug therapy.
Plants are called producers because they make their own food. So the grass is the producer.
Answer:
A. is correct
Explanation:
Low-pressure systems are associated with volatile weather conditions like clouds and rain. This is exactly what A says. Hope this helps :)
An example of a missense mutation in a protein-encoding gene would most likely be a neutral mutation is option B: replacement of a polar amino acid with another polar amino acid at the protein's surface.
A frequent and well-known example of a missense mutation is the blood condition sickle-cell anemia. Missense mutations exist in the DNA at a single location in sickle-cell anemia patients. A different amino acid is required in this missense mutation, which also alters the overall structure of the protein. Similarly, replacement of a polar amino acid by another polar Ami no acid at the protein's surface is a missense mutation causing change in a single site.
A neutral mutation is one whose fixation is unrelated to natural selection. Therefore, the independence of a mutation's fixation from natural selection can be used to define the selective neutrality of a mutation.
To know more about mutations, refer to the following link:
brainly.com/question/20407521
#SPJ4
Complete question is:
Which example of a missense mutation in a protein-encoding gene would most likely be a neutral mutation?
a) Replacement of a polar amino acid with a nonpolar amino acid at the protein's outer surface
b) Replacement of a polar amino acid with another polar amino acid at the protein's surface
c) Replacement of a polar amino acid with another polar amino acid in the protein's interior
d) Replacement of a polar amino acid with a nonpolar amino acid in the protein's interior