Answer:
<em>Barometers measure this pressure. ... Changes in the atmosphere, including changes in air pressure, affect the weather. Meteorologists use barometers to predict short-term changes in the weather. A rapid drop in atmospheric pressure means that a low-pressure system is arriving.</em>
Explanation:
<h3>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h3>
Answer:

Explanation:
<u>Molecular formula from Glucose:</u>
C₆H₁₂O₆
<u>3 moles of Glucose:</u>
3C₆H₁₂O₆
In 1 mole of Glucose, there are 12 hydrogen atoms.
<u>In 3 moles:</u>
= 12 × 3
= 36 H atoms
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
A. Metallic bond
Explanation:
Think about it: copper and tin are both common metals. That's how we know it's a metallic bond!
Why not B: Covalent bonds are between two nonmetals.
Why not C: Ionic bonds are between a nonmetal and a metal.
Why not D: Paired bond isn't a common phrase in chemistry.
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.