Balanced chemical equation:
* moles of oxygen
4 Al + 3 O2 = 2 Al2O3
4 moles Al -------------- 3 moles O2
9.30 moles Al ---------- moles O2
moles O2 = 9.30 * 3 / 4
moles O2 = 27.9 / 4 => 6.975 moles of O2
Therefore:
Molar mass O2 = 31.9988 g/mol
n = m / mm
6.975 = m / 31.9988
m = 6.975 * 31.9988
m = 223.19 of O2
The chemical equation given is:
<span>2x(g) ⇄ y(g)+z(s)</span>
Answer: the higher the amount of x(g) the more the forward reacton will occur and the higher the amounts of products y(g) and z(s) will be obtained at equilibrium.
Justification:
As Le Chatellier's priciple states, any change in a system in equilibrium will be compensated to restablish the equilibrium.
The higher the amount, and so the concentration, of X(g), the more the forward reaction will proceed to deal witht he high concentration of X(g), leading to an increase on the concentration of the products y(g) and z (s).
Because subatomic particles ARE what make up atoms.