Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
145 Grams!
It asks for the “Total Mass” basically asking to add, If you add 20 to 125, you get 145! Correct me if im wrong
Replaces spring 2. the mass of the weight and pulley are unchanged: m=5.8 kg and mp=1.7 kg
It begins with a kick-off
The cluster that is most likely to be located in the halo of our galaxy is the diagram that shows main-sequence stars of every spectral type except O, along with a few giants and supergiants.
<h3>What are star clusters?</h3>
Star clusters are large collections of stars. Star clusters are classified into two types: Globular clusters are gravitationally bound groups of tens of thousands to millions of old stars.
Because of their location on the dusty spiral arms of spiral galaxies, they are sometimes referred to as galactic clusters. Stars in an open cluster share a common ancestor as they all formed from the same massive molecular cloud.
A typical spiral galaxy has a faint, extended stellar halo. A stellar halo is an essentially spherical population of stars and globular clusters thought to surround most disk galaxies and the cD class of elliptical galaxies. It should be noted that a halo is a spherical cloud of stars surrounding a galaxy. Astronomers have proposed that the Milky Way's halo is composed of two populations of stars.
Learn more about star on:
brainly.com/question/21379923
#SPJ1