Answer: 12 N to the right
Explanation:
If we calculate the net force acting on the box, we will have:
<u>In y-component:</u>
(1)
Where
is the Normal force, directed upwards and
is the weight of the box (gravity force), directed downwards.
(2)
(3) Hence the net force in the vertical component is zero
<u>In x-component:</u>
(4)
Where
and
(5)
(6) This is the net force in the horizontal component
Therefore, the total net force acting on the box is 12 N directed to the right
Landforms result from a combination constructive and destructive forces.
Hope this helps
At 1.70 atm, a gas sample occupies 4.25 liters. If the pressure in the gas increases to 2.40 atm, what will the new volume be?
Answer:
3.01L
Explanation:
Given parameters:
Initial pressure, P1 = 1.7atm
Initial volume, V1 = 4.25L
Final pressure, P2 = 2.4atm
Unknown:
Final or new volume, V2 = ?
Solution:
To solve this problem, we use Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes, if the temperature is constant".
P1 V1 = P2 V2
P1 is the initial pressure
V1 is the initial volume
P2 final pressure
V2 final volume
1.7 x 4.25 = 2.4 x V2
V2 = 3.01L
The second one (4.1 kg ball)
This is because the mxv is greater than the other one.
For the 4.1kg ball, the force it’s moving on is 4.92N
As for the 3.2kg ball, it’s moving with a force of 0.9N. Much less than the other one.
Answer:
Workdone = 600 Kilojoules
Explanation:
Given the following data:
Time = 8 seconds
Power = 75,000 Watts
Distance = 58 m
To find the work done;
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
Thus, work done is given by the formula;
Workdone = power * time
Workdone = 75000 * 8
Workdone = 600,000 = 600 KJ