Answer:
53.13 °
Explanation:
In order to do this, we just need to apply the following:
tanα = Dy/Dx
Where:
Vy: speed of the ball in the y axis.
Vx: speed of the ball in the x axis.
At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.
According to this, then:
tanα = (40/30)
tanα = 1.3333
α = tan⁻¹(1.3333)
<h2>
α = 53.13°</h2>
This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.
Hope this helps
Answer:
Explanation:
Work done in lifting the weight once = mgh
= 20 x 9.8 x (1.9+1.7)
= 705.6 J
= 705.6 / 4.2 calorie
= 168 cals
Total energy to be spent = 600 x 10³ cals
No of times weight is required to be lifted
= 600 x 10³ / 168
= 3.57 x 10³ times
Total time to be taken = 2 x 3.57 x 10³
= 7.14 x 10³ s
=119 minutes .
Answer:
Explanation:
Given
initially mass is stretched to 
Let k be the spring Constant of spring
Therefore Total Mechanical Energy is 
Position at which kinetic Energy is equal to Elastic Potential Energy


it is given

thus 



The two wires carry current in opposite directions: this means that if we see them from above, the magnetic field generated by one wire is clock-wise, while the magnetic field generated by the other wire is anti-clockwise. Therefore, if we take a point midway between the two wires, the resultant magnetic field at this point is just the sum of the two magnetic fields, since they act in the same direction.
Therefore, we should calculate the magnetic field generated by each wire and then calculate their sum. We are located at a distance r=0.10 m from each wire.
The magnetic field generated by wire 1 is:

The magnetic field generated by wire 2 is:

And so, the resultant magnetic field at the point midway between the two wires is