Answer:
Magnitude of the third vector: 57.85 cm
The direction of the third vector: 44.76 N of W
Explanation:
Answer:
5,878,625,370,000 miles or 5.87 Trillion miles
Explanation:
The result: One light-year equals 5,878,625,370,000 miles (9.5 trillion km).
Answer:
Option B. 32 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 128 g
Half-life (t½) = 2.25 billion years
Number of half-lives (n) = 2
Amount remaining (N) =?
The amount of 128 gram of Radium-226 that will remain after 2 half-lives has elapsed can be obtained as followb
N = 1/2ⁿ × N₀
N = 1/2² × 128
N = 1/4 × 128
N = 0.25 × 128
N = 32 g
Therefore, 32g of the sample will remain.
Answer:
0.099C
Explanation:
First, we need to get the common potential voltage using the formula

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

Therefore

Charge, Q is given by CV hence for the first capacitor charge will be 
Here, 
Answer:
The maximum safe speed of the car is 30.82 m/s.
Explanation:
It is given that,
The formula that models the maximum safe speed, v, in miles per hour, at which a car can travel on a curved road with radius of curvature r r, is in feet is given by :
.........(1)
A highway crew measures the radius of curvature at an exit ramp on a highway as 380 feet, r = 380 feet
Put the value of r in equation (1) as :

v = 30.82 m/s
So, the maximum safe speed of the car is 30.82 m/s. Hence, this is the required solution.