1 gallon = 231 cubic inches
1 cubic foot = 1728 cubic inches
(55 gal) x (231 in³/gal) x (1 ft³/1728 in³)
= (55 x 231 / 1728) ft³
= 7.352 cubic feet (rounded)
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Alvin (DSV-2) is a manned deep-ocean research submersible owned by the United States Navy and operated by the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts. The vehicle was built by General Mills' Electronics Group[2] in Minneapolis, Minnesota. Named to honor the prime mover and creative inspiration for the vehicle, Allyn Vine, Alvin was commissioned on 5 June 1964. The submersible is launched from the deep submergence support vessel RV Atlantis (AGOR-25), which is also owned by the U.S. Navy and operated by WHOI. The submersible has made more than 4,400 dives, carrying two scientists and a pilot, to observe the lifeforms that must cope with super-pressures
Answer:
any type of magnet or the number of magnet dosent matter its what matters is that iron is attracted to a magnet . Because iron is a metal and metals always attract magnet or any magenetic objects .
Explanation:
Answer:
27.44 J
Explanation:
We can find the energy at the top of the slide by using the potential energy equation:
At the top of the slide, the swimmer has 0 kinetic energy and maximum potential energy.
The swimmer's mass is given as 7.00 kg.
The acceleration due to gravity is 9.8 m/s².
The (vertical) height of the water slide is 0.40 m.
Substitute these values into the potential energy equation:
- PE = (7.00)(9.8)(0.40)
- PE = 27.44
Since there is 0 kinetic energy at the top of the slide, the total energy present is the swimmer's potential energy.
Therefore, the answer is 27.44 J of energy when the swimmer is at the top of the slide.