1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leviafan [203]
2 years ago
6

Is 1 milliliter/second a small or large flow? Why?

Physics
2 answers:
ozzi2 years ago
7 0

Answer:

1 ml/second is a small flow

Explanation:

NeTakaya2 years ago
7 0

It dependependsdependsdepends


Are you a blue whale or a brine shrimp ?

You might be interested in
A basketball player is 4.22 m from
max2010maxim [7]

Answer: The height above the release point is 2.96 meters.

Explanation:

The acceleration of the ball is the gravitational acceleration in the y axis.

A = (0, -9.8m/s^)

For the velocity we can integrate over time and get:

V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))

for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)

P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)

now, the time at wich the horizontal displacement is 4.22 m will be:

4.22m = 9.20*cos(69°)*t

t = (4.22/ 9.20*cos(69°)) = 1.28s

Now we evaluate the y-position in this time:

h =  -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m

The height above the release point is 2.96 meters.

3 0
3 years ago
Read 2 more answers
at the sewing store, ava bought a bag of buttons. 21 in all. 21 of the buttons were large. what percentage of the buttons wre la
erma4kov [3.2K]
If she only has 21 buttons and all 21 of them are large, then all of her buttons are large. so 100% of the buttons would be large.
6 0
3 years ago
Read 2 more answers
a 150 N force is used to pull a wooden box across a wooden surface at a constant velocity. what is the mass of the box?
IRINA_888 [86]

Answer:

The mass of the box:

m =  60 kg

Explanation:

Given:

F = 150 N

g = 10 m/s²

_________

m - ?

Coefficient of friction wood on wood:

μ = 0.25

Friction force:

F₁ = μ*m*g

Newton's Third Law:

F = F₁

F = μ*m*g

The mass of the box:

m = F / ( μ*g) = 150 / (0.25*10) =  60 kg

7 0
1 year ago
A person is attracted toward the centerof the earth by a 500 n gravitational force. the force with which the earth is attracted
nignag [31]
500 N  is the answer, you just tell that the moon is attracted towards the person because of the Earth's huge mass. 
4 0
3 years ago
Help with this physics task pls
cupoosta [38]

Answer:

Answers can be seen below

Explanation:

First we must explain the essential when we clear equations, and that is that if the term we need to clear is accompanied by other terms that are being added up, then those terms go to the other side of the equation to subtract if those terms are subtracting, then they go to the other side to add, if those terms are found multiplying then they go to the other side of the equation to divide and if those other terms are found dividing then they go to the other side of the equation to multiply.

(Primero debemos explicar lo esencial cuando despejamos ecuaciones, y es que si el término que necesitamos despejar va acompañado de otros términos que se están sumando, entonces esos términos van al otro lado de la ecuación para restar si esos términos están restando, luego van al otro lado para sumar, si esos términos se encuentran multiplicando luego van al otro lado de la ecuación a dividir, y si esos términos se encuentran dividiendo, pasan al otro lado de la ecuación a multiplicar.)

1 )  

t=\frac{v}{a} ; d=s*(t-t_{0} )

2)

k=\frac{2*U}{x^{2} }; T_{2}=\frac{P_{2}*V_{2}*T_{1}  }{P_{1}*V_{1}  }  \\

3)

L=\frac{F}{\pi*r*P}; d=\frac{w}{F*cos(o)}

4)

t^{2}=\frac{2*x}{g}  ; V_{2}=\frac{A_{1}*V_{1} }{A_{2} }  \\

5)

h=\frac{V}{\pi *r^{2} } ; r=\frac{t}{F*sin(o)}

6)

h=\frac{m}{(1/2)*\pi *r^{2} }  ; h_{2}=\frac{F_{2}*(1/2)*b_{1} *h_{1} }{F_{1}*(1/2)*b_{2}*h_{2}   }

7)

b=\frac{mg-ma}{v}; m=\frac{F+kx}{g*cos(o)}

8)

a=\frac{v-v_{o} }{t} ; u=\frac{m_{1}+m_{2}  }{M}

9)

v_{o}=\frac{x-\frac{1}{2}*a*t^{2}  }{t}  ; F=\frac{W+uNd}{d*cos(o)}

10)

h=\frac{E-\frac{1}{2}*m*v^{2}  }{mg} ; v_{2} ^{2} = \frac{Dk-\frac{1}{2} m*v_{1}^{2}  }{\frac{1}{2}m }

11)

N=\frac{mg*sin(o)-F}{u} ; x^{2}=\frac{W+\frac{1}{2}k*x_{1}^{2}   }{\frac{1}{2}*k }

12)

x=x_{o} +\frac{v^{2-v_{o}^{2}  } }{2a}  ;  m=\frac{P*A-F_{1}-F_{2} }{g}

13)

x_{o} = x-\frac{F}{k} ;  u=\frac{cos(o)-\frac{a}{g} }{sin(o)}

14)

t=\frac{d}{v} +t_{o} ; t_{o} = t-(\frac{v-v_{o} }{a} )

15)

F_{2}=\frac{W-F_{1} *d}{d}+F_{3}   ;  v_{2}^{2}=v_{1}^{2}+\frac{2*Dk}{m}

16)

y_{1}=y-\frac{u}{mg}  ; x^{2} = \frac{2W}{k}+x_{o} ^{2}

7 0
3 years ago
Other questions:
  • Which of the following is the SI unit used in measuring the temperature of a hot cup of coffee?
    15·2 answers
  • In a mail-sorting facility, a 2.50-kg package slides down an inclined plane that makes an angle of 20.0° with the horizontal. Th
    15·1 answer
  • A rocket, initially at rest, is fired vertically with an upward acceleration of 10 m/s2. At an altitude of 0.50 km, the engine o
    8·1 answer
  • A chair of mass 11.5 kg is sitting on the horizontal floor; the floor is not frictionless. You push on the chair with a force F
    6·2 answers
  • Find the angle of refraction of a ray of light that enters a diamond (n=2.419) from air at an angle of 18.0° to the normal. ONLY
    14·1 answer
  • An archer wants to hit a target that is dropped from a tower. At the sound of a horn, the archer is to shoot an arrow; at the sa
    5·2 answers
  • In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
    7·1 answer
  • In the figures below, there are four copper wires shown. Assuming that all the wires are the same temperature, which has the gre
    13·1 answer
  • Qué es el movimiento
    11·2 answers
  • The atmospheric pressure at the surface of titan is.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!