Answer:
pH at equivalence point is 8.52
Explanation:

1 mol of HCOOH reacts with 1 mol of NaOH to produce 1 mol of 
So, moles of NaOH used to reach equivalence point equal to number of moles
produced at equivalence point.
As density of water is 1g/mL, therefore molarity is equal to molality of an aqueous solution.
So, moles of
produced = 
Total volume of solution at equivalence point = (25+29.80) mL = 54.80 mL
So, at equivalence point concentration of
= 
At equivalence point, pH depends upon hydrolysis of
. So, we have to construct an ICE table.

I: 0.1940 0 0
C: -x +x +x
E: 0.1940-x x x
So, ![\frac{[HCOOH][OH^{-}]}{[HCOO^{-}]}=K_{b}(HCOO^{-})=\frac{10^{-14}}{Ka(HCOOH)}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHCOOH%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BHCOO%5E%7B-%7D%5D%7D%3DK_%7Bb%7D%28HCOO%5E%7B-%7D%29%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7BKa%28HCOOH%29%7D)
species inside third bracket represent equilibrium concentrations
So, 
or,
So, 
So, 
So, ![pH=14-pOH=14+log[OH^{-}]=14+logx=14+log(3.285\times 10^{-6})=8.52](https://tex.z-dn.net/?f=pH%3D14-pOH%3D14%2Blog%5BOH%5E%7B-%7D%5D%3D14%2Blogx%3D14%2Blog%283.285%5Ctimes%2010%5E%7B-6%7D%29%3D8.52)
Answer:
For this angular momentum, no quantum number exist
Explanation:
From the question we are told that
The magnitude of the angular momentum is 
The generally formula for Orbital angular momentum is mathematically represented as

Where
is the quantum number
now
We can look at the given angular momentum in this form as

comparing this equation to the generally equation for Orbital angular momentum
We see that there is no quantum number that would satisfy this equation
In an observation in an experiment, you want to write down as much detail as possible. So the answer would be false.
Answer:B
Explanation: Because you know how the is potential energy and then there is kinetic energy yeah those have to do with movement like a roller coaster